Share Email Print

Proceedings Paper

Optimized optical morphological object classification
Author(s): W. Michael Crowe
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Morphological transformation provides a powerful, nonlinear means of quantitatively analyzing data sets such as images. This technique has traditionally been applied to feature location or feature removal, as in noise removal. However, the technique holds some promise for fast object classification. By viewing the transformation as a neural network, proven training techniques may be applied to optimize the performance. The critical step in applying morphology is the design of the structuring element or shape of the filter. By casting the problem as that of object classification and by properly defining error functions, neural network training techniques may be used to optimize performance. In addition, this view of the procedure as a neural network allows the generalization of the technique to include sequences of filters, which correspond to multiple layer neural networks. an optical architecture is being considered to implement a sequence of morphological transformations, taking into account known principles and limitations of the optics and of neural networks, in order to perform a complex object classification task. Then the corresponding morphological filter parameter will be optimized using neural network training techniques.

Paper Details

Date Published: 27 March 1997
PDF: 7 pages
Proc. SPIE 3073, Optical Pattern Recognition VIII, (27 March 1997); doi: 10.1117/12.270357
Show Author Affiliations
W. Michael Crowe, U.S. Army Missile Command (United States)

Published in SPIE Proceedings Vol. 3073:
Optical Pattern Recognition VIII
David P. Casasent; Tien-Hsin Chao, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?