Share Email Print

Proceedings Paper

Architecture design of motion estimation for ITU-T H.263
Author(s): Chung-Wei Ku; Gong-Sheng Lin; Liang-Gee Chen; Yung-Ping Lee
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Digitalized video and audio system has become the trend of the progress in multimedia, because it provides great performance in quality and feasibility of processing. However, as the huge amount of information is needed while the bandwidth is limitted, data compression plays an important role in the system. Say, for a 176 x 144 monochromic sequence with 10 frames/sec frame rate, the bandwidth is about 2Mbps. This wastes much channel resource and limits the applications. MPEG (moving picttre ezpert groip) standardizes the video codec scheme, and it performs high compression ratio while providing good quality. MPEG-i is used for the frame size about 352 x 240 and 30 frames per second, and MPEG-2 provides scalibility and can be applied on scenes with higher definition, say HDTV (high definition television). On the other hand, some applications concerns the very low bit-rate, such as videophone and video-conferencing. Because the channel bandwidth is much limitted in telephone network, a very high compression ratio must be required. ITU-T announced the H.263 video coding standards to meet the above requirements.8 According to the simulation results of TMN-5,22 it outperforms 11.263 with little overhead of complexity. Since wireless communication is the trend in the near future, low power design of the video codec is an important issue for portable visual telephone. Motion estimation is the most computation consuming parts in the whole video codec. About 60% of the computation is spent on this parts for the encoder. Several architectures were proposed for efficient processing of block matching algorithms. In this paper, in order to meet the requirements of 11.263 and the expectation of low power consumption, a modified sandwich architecture in21 is proposed. Based on the parallel processing philosophy, low power is expected and the generation of either one motion vector or four motion vectors with half-pixel accuracy is achieved concurrently. In addition, we will present our solution how to solve the other addition modes in 11.263 with the proposed architecture.

Paper Details

Date Published: 10 January 1997
PDF: 12 pages
Proc. SPIE 3024, Visual Communications and Image Processing '97, (10 January 1997); doi: 10.1117/12.263260
Show Author Affiliations
Chung-Wei Ku, National Taiwan Univ. (Taiwan)
Gong-Sheng Lin, National Taiwan Univ. (Taiwan)
Liang-Gee Chen, National Taiwan Univ. (Taiwan)
Yung-Ping Lee, National Taiwan Univ. (Taiwan)

Published in SPIE Proceedings Vol. 3024:
Visual Communications and Image Processing '97
Jan Biemond; Edward J. Delp III, Editor(s)

© SPIE. Terms of Use
Back to Top