Share Email Print
cover

Proceedings Paper

Holographic spectrum-splitting photovoltaic system using bifacial cells
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this paper a photovoltaic system is proposed that achieves high energy yield by integrating bifacial silicon cells into a spectrum-splitting module. Spectrum-splitting is accomplished using volume holographic elements to spectrally divide sunlight onto an array of PV cells with different bandgap energies. Diffuse sunlight is transmitted through the holographic element and converted. Light that is reflected off the ground surface is incident upon the rear side of the module and converted by the bifacial silicon cells. A diffuse scattering surface is applied to the rear-side of the monofacial wide-bandgap cell to redirect light to the bifacial silicon and increase the light collection. The volume holographic element optimization is automated and practical system design parameters such as concentration and aspect ratio are analyzed. An example using 22.5% efficient silicon and 28.8% efficient GaAs is presented and shows that an energy conversion efficiency of 32.9% can be achieved using typical utility scale illumination parameters. An economic analysis is presented that shows the installed cost per watt can be reduced by over 30% compared to a monofacial silicon panel and can even provide benefit if the cost of the wide-bandgap cell is over 10X the cost of silicon cells.

Paper Details

Date Published: 13 April 2020
PDF: 7 pages
Proc. SPIE 11366, Photonics for Solar Energy Systems VIII, 113660P (13 April 2020); doi: 10.1117/12.2555874
Show Author Affiliations
Benjamin D. Chrysler, The Univ. of Arizona (United States)
Raymond K. Kostuk, The Univ. of Arizona (United States)


Published in SPIE Proceedings Vol. 11366:
Photonics for Solar Energy Systems VIII
Alexander N. Sprafke; Jan Christoph Goldschmidt; Gregory Pandraud, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray