Share Email Print

Proceedings Paper

Advances in vapor phase epitaxy of HgCdTe on sapphire and silicon
Author(s): Sergio Bernardi
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The 'isothermal vapor phase epitaxy (iso-VPE) of mercury cadmium telluride on finite cadmium telluride substrate- systems,' consists in the complete transformation of starting CdTe films, on foreign-inert-substrates grown (by MOCVD or MBE), into compositionally controlled and uniform HgCdTe/foreign-substrate structures. The HgTe vapor phase growth and the HgTe/CdTe solid-state interdiffusion are the physical phenomena controlling the iso-VPE process evolution. Working at 530 degrees Celsius, under experimental conditions characterized by HgTe/CdTe interdiffusion rates higher than the HgTe growth rates, the possibility to prepare high quality Hg1-xCdxTe/Sapphire structures has been demonstrated and reported last year. Recently the same process has been successfully experimented on CdTe/Silicon substrates too. For the first time the HgCdTe/Silicon iso-VPE structures characteristics are reported in comparison with the equivalent HgCdTe/Sapphire films. Because of the good solid-state chemical compatibility between Hg1-xCdxTe alloys and silicon, well defined metallurgic interfaces between active layers and silicon substrates have been obtained. Rocking curves with FWHM in the 110 - 130 arcsec range have been measured on 15 micrometer thick HgCdTe/silicon iso-VPE structures. The films as-grown electrical characteristics are p-type, according to a mercury vacancy dominated defectivity.

Paper Details

Date Published: 22 October 1996
PDF: 12 pages
Proc. SPIE 2816, Infrared Detectors for Remote Sensing: Physics, Materials, and Devices, (22 October 1996); doi: 10.1117/12.255154
Show Author Affiliations
Sergio Bernardi, Consorzio CREO (Italy)

Published in SPIE Proceedings Vol. 2816:
Infrared Detectors for Remote Sensing: Physics, Materials, and Devices
Randolph E. Longshore; Jan W. Baars, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?