Share Email Print

Proceedings Paper

Skin cancer segmentation and classification with improved deep convolutional neural network
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In the last few years, Deep Learning (DL) has been showing superior performance in different modalities of bio-medical image analysis. Several DL architectures have been proposed for classification, segmentation, and detection tasks in medical imaging and computational pathology. In this paper, we propose a new DL architecture, the NABLA-N network (∇N-Net), with better feature fusion techniques in decoding units for dermoscopic image segmentation tasks. The ∇N-Net has several advances for segmentation tasks. First, this model ensures better feature representation for semantic segmentation with a combination of low to high-level feature maps. Second, this network shows better quantitative and qualitative results with the same or fewer network parameters compared to other methods. In addition, the Inception Recurrent Residual Convolutional Neural Network (IRRCNN) model is used for skin cancer classification. The proposed ∇N-Net network and IRRCNN models are evaluated for skin cancer segmentation and classification on the benchmark datasets from the International Skin Imaging Collaboration 2018 (ISIC-2018). The experimental results show superior performance on segmentation tasks compared to the Recurrent Residual U-Net (R2U-Net). The classification model shows around 87% testing accuracy for dermoscopic skin cancer classification on ISIC2018 dataset.

Paper Details

Date Published: 2 March 2020
PDF: 11 pages
Proc. SPIE 11318, Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications, 1131814 (2 March 2020); doi: 10.1117/12.2550146
Show Author Affiliations
Md Zahangir Alom, Univ. of Dayton (United States)
Theus Aspiras, Univ. of Dayton (United States)
Tarek M. Taha, Univ. of Dayton (United States)
Vijayan K. Asari, Univ. of Dayton (United States)

Published in SPIE Proceedings Vol. 11318:
Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications
Po-Hao Chen; Thomas M. Deserno, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?