Share Email Print
cover

Proceedings Paper

Theoretical model and experimental verification on improving signal-to-noise of full-waveform LiDAR using differential optical path
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A novel approach to improve signal-to-noise (SNR) of full-waveform LiDAR based on differential optical path is proposed. Two avalanche photodiodes are placed on the before and after the focus of a focusing lens to detect backscattered full - waveform signal (BFWS) respectively. The two BFWSs are sent to a subtraction circuit to suppress background noise. The mathematical model of the differential BFWS is developed. A prototype is built and the effectiveness of the proposed approach has been validated by experiments. The results show that comparing with the traditional method, the proposed method can improve SNR, which verifies the validity of the proposed method.

Paper Details

Date Published: 12 March 2020
PDF: 10 pages
Proc. SPIE 11434, 2019 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments, 1143416 (12 March 2020); doi: 10.1117/12.2549916
Show Author Affiliations
Yu Tao, Beijing Institute of Technology (China)
People's Liberation Army of China (China)
Yang Cheng, Beijing Institute of Technology (China)
Jie Cao, Beijing Institute of Technology (China)
Qun Hao, Beijing Institute of Technology (China)


Published in SPIE Proceedings Vol. 11434:
2019 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments
Juan Liu; Baohua Jia; Xincheng Yao; Yongtian Wang; Takanori Nomura, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray