Share Email Print

Proceedings Paper

Image-guided robotic k-wire placement for orthopaedic trauma surgery
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Purpose. We report the initial development of an image-based solution for robotic assistance of pelvic fracture fixation. The approach uses intraoperative radiographs, preoperative CT, and an end effector of known design to align the robot with target trajectories in CT. The method extends previous work to solve the robot-to-patient registration from a single radiographic view (without C-arm rotation) and addresses the workflow challenges associated with integrating robotic assistance in orthopaedic trauma surgery in a form that could be broadly applicable to isocentric or non-isocentric C-arms. Methods. The proposed method uses 3D-2D known-component registration to localize a robot end effector with respect to the patient by: (1) exploiting the extended size and complex features of pelvic anatomy to register the patient; and (2) capturing multiple end effector poses using precise robotic manipulation. These transformations, along with an offline hand-eye calibration of the end effector, are used to calculate target robot poses that align the end effector with planned trajectories in the patient CT. Geometric accuracy of the registrations was independently evaluated for the patient and the robot in phantom studies. Results. The resulting translational difference between the ground truth and patient registrations of a pelvis phantom using a single (AP) view was 1.3 mm, compared to 0.4 mm using dual (AP+Lat) views. Registration of the robot in air (i.e., no background anatomy) with five unique end effector poses achieved mean translational difference ~1.4 mm for K-wire placement in the pelvis, comparable to tracker-based margins of error (commonly ~2 mm). Conclusions. The proposed approach is feasible based on the accuracy of the patient and robot registrations and is a preliminary step in developing an image-guided robotic guidance system that more naturally fits the workflow of fluoroscopically guided orthopaedic trauma surgery. Future work will involve end-to-end development of the proposed guidance system and assessment of the system with delivery of K-wires in cadaver studies.

Paper Details

Date Published: 16 March 2020
PDF: 6 pages
Proc. SPIE 11315, Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling, 113151A (16 March 2020); doi: 10.1117/12.2549713
Show Author Affiliations
R. C. Vijayan, Johns Hopkins Univ. (United States)
R. Han, Johns Hopkins Univ. (United States)
P. Wu, Johns Hopkins Univ. (United States)
N. M. Sheth, Johns Hopkins Univ. (United States)
M. D. Ketcha, Johns Hopkins Univ. (United States)
P. Vagdargi, Johns Hopkins Univ. (United States)
S. Vogt, Siemens Healthineers (Germany)
G. Kleinszig, Siemens Healthineers (Germany)
G. M. Osgood, Johns Hopkins Medicine (United States)
J. H. Siewerdsen, Johns Hopkins Univ. (United States)
A. Uneri, Johns Hopkins Univ. (United States)

Published in SPIE Proceedings Vol. 11315:
Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling
Baowei Fei; Cristian A. Linte, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?