Share Email Print

Proceedings Paper

MR-radiomic biopsy for estimation of malignancy grade in parotid gland cancer
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We have developed a magnetic resonance (MR) image-based radiomic biopsy approach for estimation of malignancy grade in parotid gland cancer (PGC). Preoperative T1- and T2-weighted MR images of 39 PGC patients with 20 highand 19 intermediate-/low-malignancy grades were employed. High- versus intermediate-/low-malignancy grades were estimated using MR-radiomic biopsy approaches, i.e. 972 hand-crafted feature and transfer learning of five pre-trained deep learning (DL) architectures (AlexNet, GoogLeNet, VGG-16, ResNet-101, DenseNet-201). The 39 patients were divided into 70% for training datasets and 30% for test datasets. The hand-crafted features were extracted from cancer regions in T1- and T2-weighted MR images. Three features were selected as a radiomic signature by using a least absolute shrinkage and selection operator (LASSO), whose coefficients of three features were used for constructing the radiomic score (Rad-score). The two grade malignancy was estimated by using an optimal cut-off value of Rad-score. On the other hand, last three layers of the DL architectures were replaced with new three layers for the estimation task. The DL architectures were fine-tuned with training datasets and were evaluated with test datasets. The performances of the MR-radiomic biopsy approaches were assessed by using the accuracy and the area under the receiver operating characteristic curve (AUC). The VGG-16 demonstrated the best performance (accuracy=85.4%, AUC=0.906), but the other approaches showed worse performances (Rad-score: 83.3%, 0.830, AlexNet: 84.4%, 0.915, GoogLeNet: 84.9%, 0.884, ResNet-101: 84.9%, 0.918, DenseNet-201: 84.4%, 0.869) than the VGG-16. The VGG-16-based MR-radiomic biopsy could be feasible for the malignancy grade estimation of PGC.

Paper Details

Date Published: 2 March 2020
PDF: 5 pages
Proc. SPIE 11318, Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications, 1131818 (2 March 2020); doi: 10.1117/12.2549462
Show Author Affiliations
H. Kamezawa, Teikyo Univ. (Japan)
H. Arimura, Kyushu Univ. (Japan)
R. Yasumatsu, Kyushu Univ. (Japan)
K. Ninomiya, Kyushu Univ. (Japan)

Published in SPIE Proceedings Vol. 11318:
Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications
Po-Hao Chen; Thomas M. Deserno, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?