Share Email Print

Proceedings Paper

Deep learning enabled prior image constrained compressed sensing (DL-PICCS) reconstruction framework for sparse-view reconstruction
Author(s): Chengzhu Zhang; Yinsheng Li; Guang-Hong Chen
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This work aims to combine compressed sensing reconstruction with a deep learning framework to leverage their individual strengths and enable 123-view moderate-dose sparse-view reconstruction for diagnostic CT imaging systems. Specifically, linear FBP reconstruction was applied to reconstruct sparse data, followed by a trained U-Net to remove artifacts resulting from undersampling. This methodology has been exploited in many other deep learning applications for CT imaging. However, this approach may be subjected to the generalizability issue in which the reconstruction can either remove real lesions or add lesions that may not exist. This will be demonstrated in our results. In our proposed work, the output of the network is used as the prior image for a prior image constrained compressed sensing (PICCS) reconstruction. This step helps to ensure the reconstructed image is consistent with the measured data. Finally, the PICCS reconstructed image is further cleaned up by a trained light duty U-Net to improve noise texture and reduce noise to generate the final reconstructed image. Both simulation data and human subject data were used to validate the proposed image reconstruction framework. In simulation studies, it is demonstrated that the final output corrected the distorted structures in the deep learning-only reconstruction with respect to the shape, size and contrast of the structures. The final images also appeared streak-free with more natural noise texture when compared with the PICCS-only reconstruction. In human subject validation, the false positive lesion-like structures in the deep learning prior image were eliminated in the final output.

Paper Details

Date Published: 16 March 2020
PDF: 6 pages
Proc. SPIE 11312, Medical Imaging 2020: Physics of Medical Imaging, 1131206 (16 March 2020); doi: 10.1117/12.2549444
Show Author Affiliations
Chengzhu Zhang, Univ. of Wisconsin-Madison (United States)
Yinsheng Li, Univ. of Wisconsin-Madison (United States)
Guang-Hong Chen, Univ. of Wisconsin-Madison (United States)

Published in SPIE Proceedings Vol. 11312:
Medical Imaging 2020: Physics of Medical Imaging
Guang-Hong Chen; Hilde Bosmans, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?