Share Email Print
cover

Proceedings Paper

A hyperacute stroke segmentation method using 3D U-Net integrated with physicians’ knowledge for NCCT
Author(s): Takuya Fuchigami; Sadato Akahori; Takayuki Okatani; Yuanzhong Li
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Evaluating size of hyperacute stroke lesions speedily is an essential procedure before physicians make treatment decisions. For a patient with brain stroke suspicion, noncontrast computerized tomography (NCCT) is firstly taken for initial infarction assessment. However, in a lot of cases, because CT hypoattenuation and texture variation caused by hyperacute ischemia are subtle, besides local intensities and texture, physicians usually compare the difference between right and left sides based on the symmetric characteristic of brain anatomy not to miss the subtle lesions. In this paper, we propose a novel 3D U-Net architecture that integrates the comparison knowledge to automatically segment hyperacute stroke lesions on NCCT. To effectively capture right and left comparison features, we introduced a horizontal flip operation into 3D UNet. We also applied gradient-based sensitivity map method to our trained model in order to visualize how much each voxel contributes to segmentation results. Experimental results showed that the proposed architecture improved segmentation accuracy. Dice similarity coefficient (DSC) was improved from 0.44 to 0.54. Sensitivity and specificity was also improved from 0.80 to 1.00 and from 0.90 to 0.98 respectively. Sensitivity maps derived from our trained model demonstrated that both the right and left sides were utilized more effectively to successfully segment ischemic lesions.

Paper Details

Date Published: 16 March 2020
PDF: 6 pages
Proc. SPIE 11314, Medical Imaging 2020: Computer-Aided Diagnosis, 113140G (16 March 2020); doi: 10.1117/12.2549176
Show Author Affiliations
Takuya Fuchigami, FUJIFILM Corp. (Japan)
Sadato Akahori, FUJIFILM Corp. (Japan)
Takayuki Okatani, Graduate School of Information Sciences, Tohoku Univ. (Japan)
RIKEN Ctr. for Advanced Intelligence Project (Japan)
Yuanzhong Li, FUJIFILM Corp. (Japan)


Published in SPIE Proceedings Vol. 11314:
Medical Imaging 2020: Computer-Aided Diagnosis
Horst K. Hahn; Maciej A. Mazurowski, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray