Share Email Print
cover

Proceedings Paper

Deep learning predicts breast cancer recurrence in analysis of consecutive MRIs acquired during the course of neoadjuvant chemotherapy
Author(s): Karen Drukker; Alexandra Edwards; John Papaioannou; Maryellen Giger
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The purpose of this study was to assess long short-term memory networks in the prediction of recurrence-free survival in breast cancer patients using features extracted from MRIs acquired during the course of neoadjuvant chemotherapy. In the I-SPY1 dataset, up to 4 MRI exams were available per patient acquired at pre-treatment, early-treatment, interregimen, and pre-surgery time points. Breast cancers were automatically segmented and 8 features describing kinetic curve characteristics were extracted. We assessed performance of long short-term memory networks in the prediction of recurrence-free survival status at 2 years and at 5 years post-surgery. For these predictions, we analyzed MRIs from women who had at least 2 (or 5) years of recurrence-free follow-up or experienced recurrence or death within that timeframe: 157 women and 73 women, respectively. One approach used features extracted from all available exams and the other approach used features extracted from only exams prior to the second cycle of neoadjuvant chemotherapy. The areas under the ROC curve in the prediction of recurrence-free survival status at 2 years post-surgery were 0.80, 95% confidence interval [0.68; 0.88] and 0.75 [0.62; 0.83] for networks trained with all 4 available exams and only the ‘early’ exams, respectively. Hazard ratios at the lowest, median, and highest quartile cut -points were 6.29 [2.91; 13.62], 3.27 [1.77; 6.03], 1.65 [0.83; 3.27] and 2.56 [1.20; 5.48], 3.01 [1.61; 5.66], 2.30 [1.14; 4.67]. Long short-term memory networks were able to predict recurrence-free survival in breast cancer patients, also when analyzing only MRIs acquired ‘early on’ during neoadjuvant treatment.

Paper Details

Date Published: 16 March 2020
PDF: 10 pages
Proc. SPIE 11314, Medical Imaging 2020: Computer-Aided Diagnosis, 1131410 (16 March 2020); doi: 10.1117/12.2549044
Show Author Affiliations
Karen Drukker, The Univ. of Chicago (United States)
Alexandra Edwards, The Univ. of Chicago (United States)
John Papaioannou, The Univ. of Chicago (United States)
Maryellen Giger, The Univ. of Chicago (United States)


Published in SPIE Proceedings Vol. 11314:
Medical Imaging 2020: Computer-Aided Diagnosis
Horst K. Hahn; Maciej A. Mazurowski, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray