Share Email Print

Proceedings Paper

Ultrafast optical resolution photoacoustic microscopy in vivo
Author(s): Jian Zeng; Weizhi Qi; Tian Jin; Lei Xi
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Photoacoustic Imaging (PAI) is an emerging non-ionizing and non-invasive biomedical imaging method in the past few years. PAI can effectively obtain both structural and functional information of bio-tissues, providing an important method for studying the morphological structure and physiological characteristics of bio-tissues, especially suitable for early-stage cancer diagnosis. As one important subtype of PAI, optical resolution photoacoustic microscopy (ORPAM) has the advantages of high spatial resolution and imaging contrast. ORPAM has been proved to be an effective and powerful method in hemodynamic and micro-circulation studies. However, due to the low scanning speed over a large field of view (FOV), the application of existing ORPAM systems has been greatly limited. In order to overcome these limitations, we report an ultrafast ORPAM (U-ORPAM) system in this research. By combining our novel rotary scanning protocol with a 200 kHz ultrafast pulsed laser, U-ORPAM has the ability to image an 8-mm-diameter FOV in 5 seconds. Both phantom and in vivo experiments were carried out to demonstrate the performance of the image system. These results indicate that U-ORPAM has equivalent imaging qualities with other ORPAM systems with a much higher imaging speed. These advantages make U-ORPAM a promising tool for the investigation of rapid hemodynamic research and clinical biomedical research.

Paper Details

Date Published: 20 December 2019
PDF: 5 pages
Proc. SPIE 11209, Eleventh International Conference on Information Optics and Photonics (CIOP 2019), 112093L (20 December 2019); doi: 10.1117/12.2548903
Show Author Affiliations
Jian Zeng, Univ. of Electronic Science and Technology of China (China)
Weizhi Qi, Southern Univ. of Science and Technology (China)
Tian Jin, Southern Univ. of Science and Technology (China)
Lei Xi, Southern Univ. of Science and Technology (China)

Published in SPIE Proceedings Vol. 11209:
Eleventh International Conference on Information Optics and Photonics (CIOP 2019)
Hannan Wang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?