Share Email Print

Proceedings Paper

Improved multi-slice Fourier ptychographic microscopy technique for high-accuracy three-dimensional tomography under oblique illuminations
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Recently, with the increasing demand for high-accuracy three-dimensional (3D) imaging and localizing of the internal subcellular structures in cells, quantitative refractive index tomography technique has been developed and widely applied in various fields, such as molecular biology, biochemistry and cell biology. Thanks to the noninterference, large field of view and high resolution advantages of traditional Fourier ptychographic microscopy (FPM) technique, quantitative phase tomography (QPT) method based on multi-slice (MS) FPM has attracted considerable attention lately. However, since the reported MS model is simply established on the traditional two-dimensional FPM, it is difficult to characterize the 3D diffractive propagation properties under large oblique illumination angles accurately. In order to solve this problem, an improved MS model for 3D FPM is proposed in this paper. First, the phase difference image of each slice under the vertical illumination is regarded as the standard phase map. Then, based on the law of refraction, the true phase delay of each slice under large oblique illumination angle is established according to the 3D optical path difference variation. The numerical error between the true phase delay and the standard phase map is then compensated in the iterative reconstruction algorithm, and finally the reconstruction accuracy and quality of the 3D QPT could be improved.

Paper Details

Date Published: 16 October 2019
PDF: 5 pages
Proc. SPIE 11205, Seventh International Conference on Optical and Photonic Engineering (icOPEN 2019), 112050E (16 October 2019); doi: 10.1117/12.2548050
Show Author Affiliations
Jiasong Sun, Nanjing Univ. of Science and Technology (China)
Chao Zuo, Nanjing Univ. of Science and Technology (China)
Qian Chen, Nanjing Univ. of Science and Technology (China)

Published in SPIE Proceedings Vol. 11205:
Seventh International Conference on Optical and Photonic Engineering (icOPEN 2019)
Anand Asundi; Motoharu Fujigaki; Huimin Xie; Qican Zhang; Song Zhang; Jianguo Zhu; Qian Kemao, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?