Share Email Print
cover

Proceedings Paper

Acquiring fluorescence decay kinetic measurements with on-chip acoustic focusing cytometry
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Flow cytometers are invaluable tools that can quantitatively analyze and separate cells with respect to a cell’s biophysical and biochemical properties. Conventional cytometers collect these physical and chemical properties in the forms of inelastic light scatter and fluorescence. Specialized cytometers came to fruition after several advancements; smaller, more efficient photodetectors, tunable laser diodes, and the advent of microfluidics. Our work focuses on the latter topic. Microfluidic-based flow cytometry is robust in single cell and single molecule detection. Recent studies have leveraged significant quantitative analysis from multiplexing in phenotyping experiments, rare events in highcontent screening assays and sorting. Multiplexing requires multiple color channels to capture and resolve the presented spectral data. Color compensation is needed to resolve emission spectra overlap and becomes difficult when 10+ colors are used. Rare event detection requires large volumes of sample to the effect of 109 cells and greater. The task becomes time and resource consuming because conventional flow is limited by linear flow velocities (50,000 events/second) and requires extensive amounts of sheath fluid. Lastly, collecting these events by conventional flow requires careful separation by means of fluorescence activated cell sorting (FACS). Most cell sorters are capable of high yields but use piezoelectric transducers that are not as biocompatible as once thought. Herein we present a time-resolved acoustofluidic flow cytometer that can theoretically surpass the linear velocity constraint, use acoustic focus to elevate biocompatibility and reduce resource consumption and eliminate the need for multiple color channels.

Paper Details

Date Published: 20 February 2020
PDF: 8 pages
Proc. SPIE 11250, High-Speed Biomedical Imaging and Spectroscopy V, 112500Z (20 February 2020); doi: 10.1117/12.2547511
Show Author Affiliations
Jesus Sambrano Jr., New Mexico State Univ. (United States)
Jessica P. Houston, New Mexico State Univ. (United States)


Published in SPIE Proceedings Vol. 11250:
High-Speed Biomedical Imaging and Spectroscopy V
Kevin K. Tsia; Keisuke Goda, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray