Share Email Print

Proceedings Paper

Modeling of a photoplethysmographic (PPG) waveform through monte carlo as a method of deriving blood pressure in individuals with obesity.
Author(s): Tananant Boonya-ananta; Andres J. Rodriguez; Anders K. Hansen; Joshua D. Hutcheson; Jessica C. Ramella-Roman
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Systolic and diastolic blood pressure values can be used as an indicator of an individual’s risk for cardiovascular disease. The common practice of blood pressure (BP) measurement using a cuff-based system provides a snapshot of blood pressure at a single instance in time and can be inconvenient and intrusive. The development of optical methods to determine blood pressure could provide continuous monitoring of blood pressure through techniques such as pulse transit time (PTT) or pulse arrival time (PAT) when used with echocardiogram. Cuff based BP devices are known to have variation and inaccuracies when applied to larger arm sizes as seen in individuals with obesity but little is known of the influence of obesity in the PPG/PTT and PAT signals. We propose that accurate waveform replication is required for the derivation of blood pressure applied to individuals with obesity. Here we use the Monte Carlo framework to develop the PPG waveform as a means to derive blood pressure through cuff less techniques. The development of a simulated waveform incorporates realistic changes in the artery related to its biomechanical properties as a pressure wave is propagated through the vessel. It is shown that a change in vessel pressure and geometry directly affects the captured optical signal. The system can account for variations in body-mass index to compensate for geometrical changes in adipose tissue layer and changes in optical properties.

Paper Details

Date Published: 20 February 2020
PDF: 9 pages
Proc. SPIE 11238, Optical Interactions with Tissue and Cells XXXI, 112380A (20 February 2020); doi: 10.1117/12.2546589
Show Author Affiliations
Tananant Boonya-ananta, Florida International Univ. (United States)
Andres J. Rodriguez, Florida International Univ. (United States)
Anders K. Hansen, Technical Univ. of Denmark (Denmark)
Joshua D. Hutcheson, Florida International Univ. (United States)
Jessica C. Ramella-Roman, Florida International Univ. (United States)

Published in SPIE Proceedings Vol. 11238:
Optical Interactions with Tissue and Cells XXXI
Bennett L. Ibey; Norbert Linz, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?