Share Email Print
cover

Proceedings Paper

Experimental demonstration of laser-machined high-Q microrod resonator for thermal sensing
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The whispering-gallery-mode(WGM) resonators have a number of advantages, including ultra-high quality factor(Q factor), extremely small mode volume and so on. It has been widely used in many fields related to high sensitivity sensing measurement, photonics material, linear and non-linear optics, and optical communication. Here we built an experimental platform for microrod resonator fabrication with a high power CO2 laser. Based on this experimental fabrication platform, a microrod resonator with an approximate 2.5mm diameter has been made, which has an ultra-smooth surface. We also designed a test platform used a tapered fiber to measure optical performances of the fabricated microrod resonator. With this test platform, we measured the maximum Q factor of the fabricated resonator, which can reach 1.52×108 under the condition of 1550nm wavelength. The fabrication platform for microrod resonator designed by our laboratory with features of fast (less than 10min), cheap, repeatable and low experimental condition. These features have huge advantages on further scaled sensing application, optoelectronic device. Furthermore, in order to design and fabricate the ultra-high sensitivity temperature sensing device, we demonstrated the frequency shift feature of the fabricated microrod resonator. We heated the microrod resonator from 22 oC to 25 oC , then calculated the experimental data. we demonstrated our microrod resonator has 0.04nm frequency shift, 14.41pm/oC temperature sensitivity, and 6.3♦10−3 oC temperature resolution.

Paper Details

Date Published: 18 December 2019
PDF: 6 pages
Proc. SPIE 11338, AOPC 2019: Optical Sensing and Imaging Technology, 113381O (18 December 2019); doi: 10.1117/12.2544320
Show Author Affiliations
Yu Yang, Univ. of Science and Technology of China (China)
Mengyu Wang, Univ. of Science and Technology of China (China)
Yuan Shen, Univ. of Science and Technology of China (China)
Lingjun Meng, Univ. of Science and Technology of China (China)
Lei Zhang, Univ. of Science and Technology of China (China)
Wenbin Xu, Beijing Institute of Environmental Features (China)
Keyi Wang, Univ. of Science and Technology of China (China)


Published in SPIE Proceedings Vol. 11338:
AOPC 2019: Optical Sensing and Imaging Technology
John E. Greivenkamp; Jun Tanida; Yadong Jiang; HaiMei Gong; Jin Lu; Dong Liu, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray