Share Email Print

Proceedings Paper

Miniature adjustable-focus camera module integrated with MEMS-tunable lenses for underwater applications
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We report in this paper a miniature adjustable-focus camera module integrated with a solid tunable lens driven by MEMS-thermal actuators. Thanks to the compact structures of the MEMS actuators and the optical-power-variation capability of such solid tunable lenses, such a camera module shows great potential in various applications, especially in tiny underwater imaging systems where an optical zoom or focus-tuning function is required. The camera module presented in this paper consists of a solid tunable lens for optical power tuning, two identical MEMS-thermal actuators for lens component driving and one commercial CMOS chip for image recording, assisted with necessary mechanical parts for supporting and housing. We first introduce the optimal design of the solid tunable lens which consists of two freeform components moving in the direction perpendicular to the optical axis, and subsequently, the MEMS thermal actuators which consist of V-shaped micro beams. The lens components are fabricated by the technique of single-point diamond turning followed by the PMDS modelling process while the MEMS-thermal actuators are materialized by a commercial MUMPS process. The static performance of the designed system, including the temperature distribution, displacement-versus-voltage curve and the optical tuning capability, is characterized in detail, together with the dynamic responding speed, hysteresis and imaging performance stability during tuning. Results show that a maximum output displacement of 135 μm is achieved by the optimized MEMS-thermal actuator with a driving voltage of 10V, and consequently a focal length tuning range from 9.2 to 7.9 mm with a responding speed of about 90 ms is realized by the solid tunable lens. The highest temperate on the actuator is about 690 K during the operation while the temperate increase on the lens components is found to be about 30 K, which guarantees the optical performance stability. Targets placed at different object distances are clearly focused by the assembled miniature camera module with various driving voltages, which demonstrate its adjustable focus capability. Such miniature adjustable-focus camera modules show promising future in underwater applications due to their compact structures and optical-power-variation capability.

Paper Details

Date Published: 18 December 2019
PDF: 8 pages
Proc. SPIE 11338, AOPC 2019: Optical Sensing and Imaging Technology, 113381J (18 December 2019); doi: 10.1117/12.2544048
Show Author Affiliations
Yongchao Zou, National Univ. of Defense Technology (China)
Jun Wang, National Univ. of Defense Technology (China)
Pan Xu, National Univ. of Defense Technology (China)
Chengyan Peng, National Univ. of Defense Technology (China)
Kang Lou, National Univ. of Defense Technology (China)

Published in SPIE Proceedings Vol. 11338:
AOPC 2019: Optical Sensing and Imaging Technology
John E. Greivenkamp; Jun Tanida; Yadong Jiang; HaiMei Gong; Jin Lu; Dong Liu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?