Share Email Print
cover

Proceedings Paper

Raman spectral properties of Fenbendazole molecules
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Fenbendazole is one kind of benzimidazole derivatives which is widely used in the treatment of parasitic infections. Because the drug action mechanism of fenbendazole is consistent with many anticancer drugs and the price is cheaper, it is considered as a potential new anticancer drug, which has caused extensive research attention. Traditional fenbendazole research methods are mostly chemical methods such as liquid chromatography. Although these methods have high precision, they have the disadvantages of cumbersome steps, high cost, and the need for specialized technicians to operate. The research method of molecular vibration information of fenbendazole has not been reported yet. In this paper, the density function theory B3LYP/6-31G* basis set and the pseudopotential basis set Lanl2dz were used to optimize and calculate the Raman activity spectrum of fenbendazole and the theoretical enhanced activity spectrum of Au as the substrate. The characteristic peaks of fenbendazole at 1093cm-1 , 1453cm-1 , 1534cm-1 , and 1633cm-1 were significantly enhanced. These characteristic peaks can be used for qualitative and quantitative analysis of fenbendazole. The causes of the difference between the theoretically calculated Raman activity spectrum and the experimental Raman spectrum are analyzed. The enhancement principle of Raman activity spectrum with Au substrate was also described. The research results will provide theoretical support for the study of the molecular properties of fenbendazole.

Paper Details

Date Published: 20 December 2019
PDF: 6 pages
Proc. SPIE 11209, Eleventh International Conference on Information Optics and Photonics (CIOP 2019), 112090H (20 December 2019); doi: 10.1117/12.2542644
Show Author Affiliations
Shuai Lian, Changchun Univ. of Science and Technology (China)
Jiahe Liu, Changchun Univ. of Science and Technology (China)
Jiazhe Lu, Changchun Univ. of Science and Technology (China)
Yifan Gu, Changchun Univ. of Science and Technology (China)
Xun Gao, Changchun Univ. of Science and Technology (China)
Chao Song, Changchun Univ. of Science and Technology (China)


Published in SPIE Proceedings Vol. 11209:
Eleventh International Conference on Information Optics and Photonics (CIOP 2019)
Hannan Wang, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray