Share Email Print

Proceedings Paper

Single-frequency chirally-coupled-core all-fiber amplifier with 100W in a linearly-polarized TEM00-mode
Author(s): Sven Hochheim; Michael Steinke; Peter Wessels; Omar de Varona; Joona Koponen; Tyson Lowder; Steffen Novotny; Jörg Neumann; Dietmar Kracht
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The output power of fiber-based single-frequency amplifiers, e.g. for gravitational wave detectors, is typically limited by nonlinear effects (e.g. stimulated Brillouin scattering). In general, to reduce the impact of nonlinearities, the mode area of the fiber core is enlarged. Chirally-coupled-core (3C®) fibers have been specifically designed to enable single-mode operation with a large mode area core. 3C®-fibers consist of a step-index fiber structure, whose signal core is additionally chirally surrounded by one ore more satellite cores. Because of the phase matching and the helical geometry, the higher order modes are pulled out of the signal core, which enables a high-purity modal content in the core. We present a robust and monolithic fiber amplifier based on an ytterbium-doped 3C®-fiber in combination with commercially available standard fibers. For the realization of such a monolithic system, a mode field adapter (MFA) was designed and installed between a standard polarization-maintaining fiber and an active 3C®-fiber for the first time. The MFA was tested regarding the guided modal content by means of a S2-system. Overall, the fiber amplifier achieves a polarization extinction ratio of 17.6 dB and an optical output power of 100.1W in a linearly polarized TEM00-mode. To our knowledge, the fundamental mode content of 98.9% is the highest TEM00-mode content of fiber amplifiers reported at this power level. This work emphasizes the high potential of fiber amplifiers based on 3C®-fibers as laser sources for the next generation of gravitational wave detectors and demonstrates that compact and robust amplifiers can be realized using 3C®-fibers.

Paper Details

Date Published: 21 February 2020
PDF: 7 pages
Proc. SPIE 11260, Fiber Lasers XVII: Technology and Systems, 112601C (21 February 2020); doi: 10.1117/12.2542192
Show Author Affiliations
Sven Hochheim, Laser Zentrum Hannover e.V. (Germany)
Michael Steinke, Laser Zentrum Hannover e.V. (Germany)
Peter Wessels, Laser Zentrum Hannover e.V. (Germany)
Omar de Varona, Laser Zentrum Hannover e.V. (Germany)
Joona Koponen, nLIGHT, Inc., Lohja (Finland)
Tyson Lowder, nLIGHT, Inc. (United States)
Steffen Novotny, nLIGHT, Inc., Lohja (Finland)
Jörg Neumann, Laser Zentrum Hannover e.V. (Germany)
Dietmar Kracht, Laser Zentrum Hannover e.V. (Germany)

Published in SPIE Proceedings Vol. 11260:
Fiber Lasers XVII: Technology and Systems
Liang Dong, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?