Share Email Print
cover

Proceedings Paper

Object-based loss function in segmented neural networks
Author(s): Jin Liu; Qun Li
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper proposes Object-based Loss Function in Segmented Neural Networks. Traditional Segmented Neural Network(SNN) are based on Pixel-based Back Propagation(PBP). Since the pixel ratios of the images occupied by different sizes of objects are not the same, the weight of the small objects in the segmentation is small, which means using PBP may greatly affects the accuracy of the detection when there are a large number of small objects. Considering this defect of PBP, we propose a Object-based Back Propagation(OBP) loss function weight design, that is, the back propagation weights of different objects are not equal, which is inversely proportional to the area occupied by the object. Segmented Neural Networks data set test.

Paper Details

Date Published: 14 February 2020
PDF: 8 pages
Proc. SPIE 11432, MIPPR 2019: Remote Sensing Image Processing, Geographic Information Systems, and Other Applications, 114320N (14 February 2020);
Show Author Affiliations
Jin Liu, Wuhan Univ. (China)
Qun Li, Wuhan Univ. (China)


Published in SPIE Proceedings Vol. 11432:
MIPPR 2019: Remote Sensing Image Processing, Geographic Information Systems, and Other Applications
Zhiguo Cao; Jie Ma; Zhong Chen; Yu Shi, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray