Share Email Print
cover

Proceedings Paper

Anchor points prediction for target detection in remote sensing images
Author(s): Jin Liu; Yongjian Gao
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

With the development of remote sensing technology, we can obtain more and more target information from remote sensing images. Among them, the 6D pose contains the position and attitude of the target relative to the camera in the three-dimensional coordinate system. The traditional 6d pose algorithm for predicting targets is calculated by predicting the target RoI or inclined box. However, the detection standard IoU of the traditional method cannot reflect the direction information of the target, and there is ambiguity of the inclination of the target inclined box, such as 0°and 180°, 0° and 360°. In this paper, we present a new algorithm for predicting the target's 6D pose in remote sensing images, Anchor Points Prediction (APP). Different from the previous methods, the target results of the final output can get the direction information. Different from the traditional method, we predict the target's multiple feature points based on the neural network to obtain the homograph between the object plane and the ground. The resulting 6d pose can accurately describe the three-dimensional position and attitude of the target. We tested our algorithm on the HRSC2016 dataset and the DOTA dataset with accuracy rates of 0.863 and 0.701, respectively. The experimental results show that the accuracy of the APP algorithm detection target is significantly improved. At the same time, the algorithm can achieve one stage prediction, which makes the calculation process easier and more efficient.

Paper Details

Date Published: 14 February 2020
PDF: 6 pages
Proc. SPIE 11432, MIPPR 2019: Remote Sensing Image Processing, Geographic Information Systems, and Other Applications, 114320L (14 February 2020); doi: 10.1117/12.2541891
Show Author Affiliations
Jin Liu, Wuhan Univ. (China)
Yongjian Gao, Wuhan Univ. (China)


Published in SPIE Proceedings Vol. 11432:
MIPPR 2019: Remote Sensing Image Processing, Geographic Information Systems, and Other Applications
Zhiguo Cao; Jie Ma; Zhong Chen; Yu Shi, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray