Share Email Print

Proceedings Paper

Monostatic propagation channel enhanced backscatter effects: a comparison of refractive spectral models
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Enhanced backscatter effects associated with the mean intensity and scintillation index for a monostatic propagation channel through atmospheric turbulence are analyzed for two spectral models of refractive-index fluctuations. The analysis presented here shows that using a more physically realistic modified spectrum with inner and outer scale parameters as well as a high-wave-number rise (bump) can lead to significantly different results than those predicted by the idealized Kolmogorov power law spectrum. The target models used in this analysis include a smooth target finite mirror, glint target finite retroreflector, and a rough surface target (Lambert surface). The general method of analysis is based on weak fluctuation theory.

Paper Details

Date Published: 14 October 1996
PDF: 11 pages
Proc. SPIE 2828, Image Propagation through the Atmosphere, (14 October 1996); doi: 10.1117/12.254166
Show Author Affiliations
Larry C. Andrews, CREOL/Univ. of Central Florida (United States)
Ronald L. Phillips, CREOL/Univ. of Central Florida (United States)

Published in SPIE Proceedings Vol. 2828:
Image Propagation through the Atmosphere
Christopher Dainty; Luc R. Bissonnette, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?