Share Email Print

Proceedings Paper

A two-stage airport detection model on large scale SAR images based on faster R-CNN
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this paper, we proposed a novel two-stage model that works in a hierarchical architecture to detect airports on synthetic aperture radar (SAR) images. In the first rough stage, an improved line segment detector (LSD) which tackles the line segments disconnection problem in SAR images is used to extract candidate airport regions coarsely. In the second fine stage, a well-trained Faster R-CNN with residual networks (ResNet) implementation (called ResFaster RCNN) is applied to each candidate regions to discriminate airport and non-airport regions and locate the airport much more precisely. Transfer learning and some improvement measures are applied to the networks. With this two-stage model, we can not only use both low-level and high-level features of airports synthetically but also avoid the information loss problem caused by resizing when large scene images are input into the networks. Experiments on large-scale SAR images have proved that the proposed method can reach a detection rate of 95% with low false alarm rate and show a great enhancement over other existing methods.

Paper Details

Date Published: 14 August 2019
PDF: 10 pages
Proc. SPIE 11179, Eleventh International Conference on Digital Image Processing (ICDIP 2019), 111790O (14 August 2019); doi: 10.1117/12.2541012
Show Author Affiliations
Chuyin Li, National Univ. of Defense Technology (China)
Lingjun Zhao, National Univ. of Defense Technology (China)
Gangyao Kuang, National Univ. of Defense Technology (Chile)

Published in SPIE Proceedings Vol. 11179:
Eleventh International Conference on Digital Image Processing (ICDIP 2019)
Jenq-Neng Hwang; Xudong Jiang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?