Share Email Print

Proceedings Paper

Effects of proton-induced radiation damage on cadmium zinc telluride pixel detectors
Author(s): Ahsan Wong; Fiona A. Harrison; Larry S. Varnell
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Cadmium zinc telluride (CdZnTe) is a room temperature solid state material with many properties attractive to space- borne astrophysical instrumentation. Irradiation of monolithic CdZnTe detectors with 199 MeV protons shows that proton-induced radiation damage causes an increase in electron trapping in the material. Small-pixel and strip CdZnTe detectors which rely on efficient electron collection are particularly sensitive to changes in the electron mean free path, which can result in significant changes in the spectral response. Using a charge transport model, we calculate the effects of the observed radiation damage on spectral response for pixel detectors of several geometries. A degradation in spectral response is observed which is most pronounced for small-pixel detectors. The magnitude of the effects indicate that depending on pixel size and the desire for good spectral performance annealing may be necessary to maintain good detector performance after approximately 1 - 2 years in low-earth orbit.

Paper Details

Date Published: 18 October 1996
PDF: 7 pages
Proc. SPIE 2806, Gamma-Ray and Cosmic-Ray Detectors, Techniques, and Missions, (18 October 1996); doi: 10.1117/12.254016
Show Author Affiliations
Ahsan Wong, California Institute of Technology (United States)
Fiona A. Harrison, California Institute of Technology (United States)
Larry S. Varnell, Jet Propulsion Lab. (United States)

Published in SPIE Proceedings Vol. 2806:
Gamma-Ray and Cosmic-Ray Detectors, Techniques, and Missions
Brian D. Ramsey; Thomas A. Parnell, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?