Share Email Print
cover

Proceedings Paper

A THz Single-Polarization-Single-Mode (SPSM) photonic crystal fiber based on epsilon-near-zero material
Author(s): Tianyu Yang; Can Ding; Richard W. Ziolkowski; Y. Jay Guo
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

To overcome the crosstalk happening between two degenerately fundamental modes of a fiber in Terahertz (THz) regime, a novel photonic crystal fiber (PCF) that yields a wide range of single-polarization-single-mode (SPSM) propagation with large loss differences (LDs) is designed. The method used to realize this SPSM PCF is to deposit an epsilon-near-zero (ENZ) material in four selected air holes in the cladding, which ends up with four ENZ rings. These ENZ rings introduce significant LDs between the wanted (X-polarized) and unwanted (Y-polarized and high order) modes. Extensive simulation results demonstrate that the LDs between the wanted and unwanted modes vary with the thickness of ENZ rings. With a very short length (4 cm) of the proposed PCF, pure SPSM propagation, i.e., the unwanted modes are 20 dB lower than the wanted mode, can be achieved from 1 to 1.2 THz.

Paper Details

Date Published: 30 December 2019
PDF: 2 pages
Proc. SPIE 11200, AOS Australian Conference on Optical Fibre Technology (ACOFT) and Australian Conference on Optics, Lasers, and Spectroscopy (ACOLS) 2019, 112002T (30 December 2019); doi: 10.1117/12.2539773
Show Author Affiliations
Tianyu Yang, Univ. of Technology, Sydney (Australia)
Can Ding, Univ. of Technology, Sydney (Australia)
Richard W. Ziolkowski, Univ. of Technology, Sydney (Australia)
Y. Jay Guo, Univ. of Technology, Sydney (Australia)


Published in SPIE Proceedings Vol. 11200:
AOS Australian Conference on Optical Fibre Technology (ACOFT) and Australian Conference on Optics, Lasers, and Spectroscopy (ACOLS) 2019
Arnan Mitchell; Halina Rubinsztein-Dunlop, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray