Share Email Print

Proceedings Paper

Curcumin-nanodiamond-silk wound dressings for sensing infection
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The presence of an infection in a wound site is typically diagnosed based on the external appearance, such as redness, swelling, odour, and/or loss of function. However, this can lead to inaccurate and untimely diagnoses, since an infection might be present without obvious symptoms. This would commonly require removal of any dressing that might be present, which can cause further pain to the patient. Therefore, there is a need for more precise methods of detecting infections, with minimal effects to the patient. Comparison of temperature differences between infected tissue and healthy tissue shows an increase ranging from 3-4 °C, while normal skin has a temperature gradient of ±1 °C. Hence, monitoring temperature of wounds can be used to detect the presence of an infection. Nanodiamonds (NDs) containing negatively charged nitrogen-vacancy (NV-) centres are capable of monitoring changes in temperature with minimal influence by environmental factors such as pH, ion concentration or molecular interaction. This study looks at encapsulating these NDs into silk fibres for use as a wound dressing that can monitor temperature changes in the wound, without requiring the removal of the dressing. To further enhance the wound healing and anti-bacterial properties, curcumin was also incorporated into the silk fibres. Curcumin is one of the active ingredients in turmeric and is known to significantly enhance wound healing through its anti-inflammatory and antibacterial properties. This study used this curcumin-nanodiamond-silk hybrid wound dressing to investigate the healing capabilities and temperature sensing properties for use as a wound dressing.

Paper Details

Date Published: 31 December 2019
PDF: 2 pages
Proc. SPIE 11201, SPIE Micro + Nano Materials, Devices, and Applications 2019, 112011B (31 December 2019); doi: 10.1117/12.2539576
Show Author Affiliations
Amanda N. Abraham, RMIT Univ. (Australia)
Asma Khalid, RMIT Univ. (Australia)
Huu Khuong Duy Nguyen, Swinburne Univ. of Technology (Australia)
Denver P. Linklater, Swinburne Univ. of Technology (Australia)
Elena Ivanova, RMIT Univ. (Australia)
Sarah J. Spencer, RMIT Univ. (Australia)
Brant C. Gibson, RMIT Univ. (Australia)

Published in SPIE Proceedings Vol. 11201:
SPIE Micro + Nano Materials, Devices, and Applications 2019
M. Cather Simpson; Saulius Juodkazis, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?