Share Email Print
cover

Proceedings Paper

Modeling of burrs during drilling of titanium alloy
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Drilling of difficult-to-cut materials like titanium alloy is a complex machining operation. Due to the tool trajectory, the chip thickness changes along the cutting edges and during the tool movement. The aim of this study is to develop a drilling simulation model depending on the tool geometry and cutting data in order to control the final quality of the machined borehole through the size of burrs. First the geometry of the chip is modelled taking into account the parameters defining the tool trajectory and its geometry. An experimental study validates the modelling through vision camera observations. From this modelling it is possible to optimize the cutting data and cutting tool geometry in order to control the burrs size and thus the final quality of the borehole.

Paper Details

Date Published: 6 November 2019
PDF: 8 pages
Proc. SPIE 11176, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2019, 1117657 (6 November 2019); doi: 10.1117/12.2536818
Show Author Affiliations
Emilia Franczyk, Cracow Univ. of Technology (Poland)
Wojciech Zębala, Cracow Univ. of Technology (Poland)
Łukasz Ślusarczyk, Cracow Univ. of Technology (Poland)


Published in SPIE Proceedings Vol. 11176:
Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2019
Ryszard S. Romaniuk; Maciej Linczuk, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray