Share Email Print

Proceedings Paper • Open Access

Validation of a spatial light modulator for space applications
Author(s): Manuel Silva-López; Antonio Campos-Jara; Alberto Álvarez-Herrero

Paper Abstract

Liquid crystals on silicon spatial light modulator (LCOS-SLM) combine the potential of reflection type spatial light modulators with the compactness and robustness of a single chip. They are used today for beam steering applications, optical beam shaping and laser processing. These devices have a high potential for space applications due to the fact that they allow to introduce any tailored wavefront distortion in an imaging instrument. Then, image reconstruction methods as phase diversity can be used to determine the Point Spread Function (PSF) inflight and, later, to introduce a corrective wavefront distortion to correct possible deviations of the expected optical quality.

Among other aberrations, the beam phase control can act on the level of focus. In space optical applications image refocusing is usually performed by means of mechanisms, either by using linear displacement of lenses or rotating wheels with plates with different thicknesses. The compactness and absence of mechanical parts of LCOS-SLM can be of great advantage for these applications. LCOS-SLM can save complexity and weight. It also reduces the risk associated to the wear of moving parts.

However, this technology has not been qualified for space applications. Liquid crystal leaks as well as outgassing issues may result as a consequence of a low pressure environment. Thermal issues can also result in loss of device homogeneity and the radiation tolerance should be analyzed. In any case, an exhaustive space simulation test is mandatory to increase the Technological Readiness Level of these devices for their use in space systems.

In our work we are showing preliminary test of a commercial LCOS-SLM under thermo-vacuum conditions. These tests are basic calibrations used to evaluate performance and degradation in a simulated space environment. Different calibration procedures are also discussed. This technology, with potential to greatly simplify an instrument design, was included in a proposal for the instrument IMaX+ spectro-polarimeter, to be onboard the mission Sunrise III, within the NASA Long Duration Balloon program.

Paper Details

Date Published: 12 July 2019
PDF: 8 pages
Proc. SPIE 11180, International Conference on Space Optics — ICSO 2018, 111806R (12 July 2019); doi: 10.1117/12.2536162
Show Author Affiliations
Manuel Silva-López, INTA Instituto Nacional de Técnica Aeroespacial (Spain)
Antonio Campos-Jara, INTA Instituto Nacional de Técnica Aeroespacial (Spain)
Alberto Álvarez-Herrero, INTA Instituto Nacional de Técnica Aeroespacial (Spain)

Published in SPIE Proceedings Vol. 11180:
International Conference on Space Optics — ICSO 2018
Zoran Sodnik; Nikos Karafolas; Bruno Cugny, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?