Share Email Print

Proceedings Paper

Reconstructing interior transmission tomographic images with an offset-detector using a deep-neural-network
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Interior tomography that acquires truncated data of a specific interior region-of-interest (ROI) is an attractive option to low-dose imaging. However, image reconstruction from such measurement does not yield an accurate solution because of data insufficiency. There have been developed a host of approaches to getting an approximate useful solution including various weighting methods, iterative reconstruction methods, and methods with prior knowledge. In this study, we use a deep-neural-network, which has shown its potentials in various fields including medical imaging, to reconstruct interior tomographic images. We assumed an offset-detector geometry which has wide applications in cone-beam CT (CBCT) imaging for its extended field-of-view (FOV) in this work. We trained a network to synthesize ‘ramp-filtered’ data within the detector active area so that the corresponding ROI reconstruction would be truncation-artifact-free in the filteredbackprojection (FBP) reconstruction framework. We have compared the results with post- and pre-convolution weighting methods and shown outperformance of the neural network approach.

Paper Details

Date Published: 28 May 2019
PDF: 5 pages
Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 1107230 (28 May 2019); doi: 10.1117/12.2534888
Show Author Affiliations
Hoyeon Lee, KAIST (Korea, Republic of)
Hyeongseok Kim, KAIST (Korea, Republic of)
Seungryong Cho, KAIST (Korea, Republic of)

Published in SPIE Proceedings Vol. 11072:
15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine
Samuel Matej; Scott D. Metzler, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?