Share Email Print
cover

Proceedings Paper

A preliminary study on explicit compensation for the non-linear-partial-volume effect in CT
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In a standard data model for CT, a single ray often is assumed between a detector bin and the X-ray focal spot even though they are of finite sizes. However, due to their finite sizes, each pair of detector bin and X-ray focal spot necessarily involves multiple rays, thus resulting in the non-linear partial volume (NLPV) effect. When an algorithm developed for a standard data model is applied to data with NLPV effect, it may engender NLPV artifacts in images reconstructed. In the presence of the NLPV effect, data necessarily relates non-linearly to the image of interest, and image reconstruction free of NLPV is thus tantamount to inverting appropriately the non-linear data model. In this work, we develop an optimization-based algorithm for solving the non-linear data model in which the NLPV effect is included, and use the algorithm to investigate the characteristics and reduction of the NLPV artifacts in images reconstructed. The algorithm, motivated by our previous experience in dealing with a non-linear data model in multispectral CT reconstruction, compensates for the NLPV effect by numerically inverting the non-linear data model through solving a non-convex optimization program. The algorithm, referred to as the non-convex Chambolle-Pock (ncCP) algorithm, is used in simulation studies for numerically characterizing the inversion of the non-linear data model and the compensation for the NLPV effect.

Paper Details

Date Published: 28 May 2019
PDF: 5 pages
Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 110720F (28 May 2019);
Show Author Affiliations
Xin Liu, The Univ. of Chicago (United States)
Shenzhen Univ. (China)
Buxin Chen, The Univ. of Chicago (United States)
Zheng Zhang, The Univ. of Chicago (United States)
Dan Xia, The Univ. of Chicago (United States)
Emil Y. Sidky, The Univ. of Chicago (United States)
Xiaochuan Pan, The Univ. of Chicago (United States)


Published in SPIE Proceedings Vol. 11072:
15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine
Samuel Matej; Scott D. Metzler, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray