
Proceedings Paper
Majorana fermions based on synthetic spin-orbit interaction (Conference Presentation)
Paper Abstract
The engineering of topological superconducting correlations in quantum devices
holds promises for new schemes of quantum computation. A wide class of systems
expected to exhibit such exotic correlations are based on conductors with strong spinorbit
interaction subject to a strong external magnetic field. Here, we show how these
features can be autonomously induced by using a magnetic texture coupled to any
quasi one dimensional conductor. We study a carbon nanotube with superconducting
contacts in close proximity to a magnetic texture. Transport spectroscopy reveals a
spectrum in which superconducting correlations in the carbon nanotube are deeply
modified by a large spin orbit coupling. We extract a value of about 1.1 meV for this
synthetic spin-orbi, larger than the intrinsic spin orbit energy in many other
platforms. Furthermore, a robust zero energy state, the hallmark of devices hosting
localized Majorana modes, emerges at zero magnetic field. Our findings could be
used for advanced experiments, including microwave spectroscopy and braiding
operations.
Paper Details
Date Published: 10 September 2019
PDF
Proc. SPIE 11090, Spintronics XII, 110901J (10 September 2019); doi: 10.1117/12.2533222
Published in SPIE Proceedings Vol. 11090:
Spintronics XII
Henri-Jean M. Drouhin; Jean-Eric Wegrowe; Manijeh Razeghi, Editor(s)
Proc. SPIE 11090, Spintronics XII, 110901J (10 September 2019); doi: 10.1117/12.2533222
Show Author Affiliations
Matthieu C. Dartiailh, Lab. de Physique de l'Ecole Normale Supérieure (France)
Matthieu M Desjardins, Lab. de Physique de l'Ecole Normale Supérieure (France)
Lauriane C Contamin, Lab. de Physique de l'Ecole Normale Supérieure (France)
Matthieu R Delbecq, Lab. de Physique de l'Ecole Normale Supérieure (France)
Laure E Bruhat, Lab. de Physique de l'Ecole Normale Supérieure (France)
Tino Cubaynes, Lab. de Physique de l'Ecole Normale Supérieure (France)
Matthieu M Desjardins, Lab. de Physique de l'Ecole Normale Supérieure (France)
Lauriane C Contamin, Lab. de Physique de l'Ecole Normale Supérieure (France)
Matthieu R Delbecq, Lab. de Physique de l'Ecole Normale Supérieure (France)
Laure E Bruhat, Lab. de Physique de l'Ecole Normale Supérieure (France)
Tino Cubaynes, Lab. de Physique de l'Ecole Normale Supérieure (France)
Jeremy J Viennot, Lab. de Physique de l'Ecole Normale Supérieure (France)
François Mallet, Lab. de Physique de l'Ecole Normale Supérieure (France)
Stanislas rohart, Lab. de Physique des Solides, Université Paris Sud (France)
Andre Thiaville, Lab. de Physique des Solides (France)
Audrey Cottet, Lab. de Physique de l'Ecole Normale Supérieure (France)
Takis Kontos, Lab. de Physique de l'Ecole Normale Supérieure (France)
François Mallet, Lab. de Physique de l'Ecole Normale Supérieure (France)
Stanislas rohart, Lab. de Physique des Solides, Université Paris Sud (France)
Andre Thiaville, Lab. de Physique des Solides (France)
Audrey Cottet, Lab. de Physique de l'Ecole Normale Supérieure (France)
Takis Kontos, Lab. de Physique de l'Ecole Normale Supérieure (France)
Published in SPIE Proceedings Vol. 11090:
Spintronics XII
Henri-Jean M. Drouhin; Jean-Eric Wegrowe; Manijeh Razeghi, Editor(s)
© SPIE. Terms of Use
