Share Email Print

Proceedings Paper

Satellite remote sensing detection of forest vegetation land cover changes and their potential drivers
Author(s): Dan M. Savastru; Maria A. Zoran; Roxana S. Savastru
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Climate changes and rapid urbanization are the main factors affecting forest vegetation land cover around the globe. Satellite remote sensing data provide important information to detect changes in forest landscapes over long time periods in contrast to conventional approaches. Satellite remote sensing provides a useful tool to capture the temporal dynamics of forest vegetation change in response to climate shifts, at spatial resolutions fine enough to capture the spatial heterogeneity. In this paper, we present an integrated, standardized approach that aims at combining remote sensing data provided by different sensors, available for a long-term period (2000-2018). This multi-sensor and multi-temporal approach detects Cernica-Branesti periurban forest vegetation dynamics based on derived biophysical parameters within the highly dynamic city of Bucharest, as a test case. Landsat TM/ETM/OLI, MODIS Terra/Aqua, and Sentinel 2 data are combined in an integrated procedure to locate forest disturbances in relation with potential climate and anthropogenic drivers. To apply the approach for detecting forest land cover changes, the MODIS Normalized Difference Vegetation Index/Enhanced Vegetation Index (NDVI/EVI), and Leaf Area Index (LAI) data are used to provide forest vegetation change detection information in relation with land surface temperature (LST) and climate stressors and to monitor forest vegetation phenological variations. Correlations between NDVI/EVI time series and climatic variables were computed. Forest vegetation dynamics at seasonal and longer timescales reflect large-scale interactions between the terrestrial biosphere and the climate system.

Paper Details

Date Published: 21 October 2019
PDF: 11 pages
Proc. SPIE 11149, Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI, 1114926 (21 October 2019); doi: 10.1117/12.2532882
Show Author Affiliations
Dan M. Savastru, National Institute of Research and Development for Optoelectronics (Romania)
Maria A. Zoran, National Institute of Research and Development for Optoelectronics (Romania)
Roxana S. Savastru, National Institute of Research and Development for Optoelectronics (Romania)

Published in SPIE Proceedings Vol. 11149:
Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI
Christopher M. U. Neale; Antonino Maltese, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?