Share Email Print

Proceedings Paper

Novel low-cost camera-based pulsed and modulated continuous wave laser detection
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A novel, low-cost, camera-based method of detecting a single nanosecond laser pulse and kHz modulated continuous wave and pulsed lasers has been developed at DSTL. The detector uses a simple optical modification to a standard rolling shutter colour camera combined with image processing techniques to distinguish lasers from other illumination sources and extract a lasers wavelength and pulse repetition frequency. In addition the detector is also capable of detecting a single nanosecond laser pulse at any given time. Such a detector has applications in free-space optical communications, as a low cost broadband method of extracting information from multiple sources, and as a detector of laser range finders. A low cost prototype (≈£600) has been developed using entirely off-the-shelf components and assessed in laboratory conditions, with the ability to measure laser wavelengths to ±5nm and pulse repetition frequencies to within ±5%. In the laboratory the prototype was also able to detect each of the 1000 pulses generated by a 10Hz 10ns 532nm pulsed laser, as well as 100 pulses sent at random intervals, highlighting its capability to detect a ns pulse at any given time. The prototype was taken to the Moonraker NATO SET-249 field trial, where it was able to measure the pulse repetition frequency of a modulated continuous wave laser source to within ±5% at a distance of 660m. This novel technology offers a low cost method of detecting lasers and extracting their pulse repetition frequencies, with a wide field of view and high spatial resolution.

Paper Details

Date Published: 7 October 2019
PDF: 10 pages
Proc. SPIE 11161, Technologies for Optical Countermeasures XVI, 111610L (7 October 2019); doi: 10.1117/12.2532834
Show Author Affiliations
Sean Tipper, Defence Science and Technology Lab. (United Kingdom)
Christopher Burgess, Defence Science and Technology Lab. (United Kingdom)

Published in SPIE Proceedings Vol. 11161:
Technologies for Optical Countermeasures XVI
David H. Titterton; Robert J. Grasso; Mark A. Richardson, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?