Share Email Print
cover

Proceedings Paper

Thin nanostructured perovskite films for high performance photo-electronic applications (Conference Presentation)
Author(s): Cheolmin Park

Paper Abstract

Ordered nanostructured crystals of thin perovskites films are of great interest to researchers because of the dimensional-dependence of their photoelectronic properties for developing the perovskites with novel properties. In this presentation, both top-down and bottom-up approaches for fabricating nanostructured perovskite films are demonstrated. First, a variety of micro/nanopatterns of a perovskite film are fabricated by either microimprinting or transfer-printing a thin spin-coated precursor film in soft-gel state with a topographically pre-patterned polymer mold, followed by thermal treatment for complete conversion of the precursor film to a perovskite one. Second, we also demonstrate a simple and robust route, involving the controlled crystallization of the perovskites templated with a self-assembled block copolymer (BCP), for fabricating nanopatterned perovskite films with various shapes and nanodomain sizes. When the precursor ion solution of a perovskite and poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) was spin-coated on the substrate, a nanostructured BCP was developed by microphase separation. Spontaneous crystallization of the precursor ions preferentially coordinated with the P2VP domains yielded ordered nanocrystals with various nanostructures. The nanopatterned perovskites showed significantly enhanced photoluminescence (PL) with high resistance to both humidity and heat due to geometrically confining crystals in and passivation with the P2VP chains. The self-assembled perovskite films with high PL performance provided a facile control of color coordinates by color conversion layers in blue-emitting devices for cool-white emission.

Paper Details

Date Published: 10 September 2019
PDF
Proc. SPIE 11089, Nanoengineering: Fabrication, Properties, Optics, Thin Films, and Devices XVI, 1108911 (10 September 2019);
Show Author Affiliations
Cheolmin Park, Yonsei Univ. (Korea, Republic of)


Published in SPIE Proceedings Vol. 11089:
Nanoengineering: Fabrication, Properties, Optics, Thin Films, and Devices XVI
Balaji Panchapakesan; André-Jean Attias, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray