Share Email Print

Proceedings Paper

ZERODUR(R) substrates for application of high-temperature protected-aluminum far-ultraviolet coatings
Author(s): Manuel A. Quijada; David A. Sheikh; Javier G. Del Hoyo; J. Gabriel Richardson
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Recent development in coating deposition processes for aluminum (Al) mirrors that are protected with a metal-fluoride overcoat (such as LiF, MgF2, or AlF3) have improved reflectance performance particularly in the far- ultraviolet (FUV) part of the optical spectrum. The active research in this area is motivated by the fact that these gains in reflectance are expected to significantly increase the throughput of any future FUV sensitive NASA missions into the Lyman Ultraviolet. These reflectance improvements are attributed, in part, by performing the metal-fluoride overcoat depositions with the substrates at an elevated temperature as high as 250 °C. ZERODUR® is a widely used material as a mirror substrate because, among other things, it exhibits a low coefficient of thermal expansion (CTE) over a wide range of temperatures. Moreover, ZERODUR® has recently been proposed for several future NASA concept missions where this improved FUV mirror coating may be used. Given the elevated temperature at which these improved FUV coatings are produced, it is imperative to make sure that heating of the substrate will not significantly impact the final figure of the coated mirror. In this paper, we will study and report the effects of heating ZERODUR® up to the highest temperature mentioned above (250 °C) during a simulated coating process. These studies are relevant since it has been reported the CTE will change if ZERODUR® is cooled down from application temperatures between 130°C and 320°C with rates that differ from the initial production annealing rate of 3°C/hr.

Paper Details

Date Published: 12 September 2019
PDF: 8 pages
Proc. SPIE 11116, Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems II, 111160T (12 September 2019); doi: 10.1117/12.2530585
Show Author Affiliations
Manuel A. Quijada, NASA Goddard Space Flight Ctr. (United States)
David A. Sheikh, ZeCoat Corp. (United States)
Javier G. Del Hoyo, NASA Goddard Space Flight Ctr. (United States)
J. Gabriel Richardson, NASA Goddard Space Flight Ctr. (United States)

Published in SPIE Proceedings Vol. 11116:
Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems II
Tony B. Hull; Dae Wook Kim; Pascal Hallibert, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?