Share Email Print

Proceedings Paper

The implementation of inkjet-printed conductive copper in solution-processed electronics (Conference Presentation)

Paper Abstract

Through the use of solution‐based materials, the field of printed electronics has not only made new devices accessible, but enabled the process of manufacture to move towards a high-throughput industrial scale. However, while the solution‐based active layer materials employed in these types of systems have been studied quite intensely, the conducting structures that feature in printed circuits, RFID applications, logic systems and electrodes in optoelectronic devices have not received as much attention. Inkjet-printing in particular, as an additive, upscalable, direct write technique that requires no masks or lithographic pre-patterning of substrates, has been utilized to produce such structures in a wide variety of (opto)electronics, paving the way to fully solution-processed devices. However, for full compatibility with flexible, low cost substrates, the processing conditions of the deposited structures need to be controlled. This contribution highlights our work on utilizing inkjet-printing to deposit copper nanoparticles (CuNPs) in order to form conducting structures within a range of electronic applications, specifically optoelectronic devices and printed circuits, and discusses methods to improve the conductive and interfacial properties. A reductive sintering approach is presented as an alternative to commonly used laser or flash lamp curing techniques. The findings presented address the importance of continuing work in improving the effectiveness of printed conductive structures, including in their use in organic and hybrid (opto)electronic devices, in order to move towards fully solution-processed and flexible electronics.

Paper Details

Date Published: 10 September 2019
Proc. SPIE 11096, Organic and Hybrid Sensors and Bioelectronics XII, 1109604 (10 September 2019); doi: 10.1117/12.2529732
Show Author Affiliations
Felix Hermerschmidt, Humboldt-Univ. zu Berlin (Germany)
Emil J. W. List-Kratochvil, Humboldt-Univ. zu Berlin (Germany)

Published in SPIE Proceedings Vol. 11096:
Organic and Hybrid Sensors and Bioelectronics XII
Ioannis Kymissis; Emil J. W. List-Kratochvil; Ruth Shinar, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?