Share Email Print
cover

Proceedings Paper

Mapping giant spin-charge conversion to the band structure in a topological oxide two-dimensional electron gas (Conference Presentation)
Author(s): Paul Noël; Diogo C. Vaz; Annika Johansson; Börge Göbel; Flavio Y. Bruno; Gyanendra Singh; Siobhan McKeown-Walker; Felix Trier; Anke Sander; Pierre Bruneel; Manali Vivek; Marc Gabay; Nicolas Bergeal; Felix Baumberger; Hanako Okuno; Agnès Barthélémy; Albert Fert; Laurent Vila; Ingrid Mertig; Jean-Philippe Attané; Manuel Bibès

Paper Abstract

While classical spintronics has traditionally relied on ferromagnetic metals as spin generators and spin detectors, spin-orbitronics exploits the interplay between charge and spin currents enabled by the spin-orbit coupling (SOC) in non-magnetic systems. An efficient spin-charge interconversion can be obtained through Spin Hall Effect and Inverse Spin Hall Effect in heavy metals such as Pt or Ta. Yet a more efficient conversion can be obtained by exploiting the direct and inverse Edelstein effects at interfaces where broken inversion symmetry induces a Rashba SOC. Although the simple Rashba picture of split parabolic bands is usually used to interpret such experiments, it fails to explain the largest conversion effects and their relation to the actual band-structure. Here, we demonstrate a giant spin-to-charge conversion effect by means of Spin Pumping FMR in an interface-engineered high-carrier-density SrTiO3 two-dimensional electron gas. We use angle-resolved photoemission and Boltzmann calculations to map its peculiar gate dependence. We show that the conversion process is amplified by enhanced Rashba-like splitting due to orbital mixing, and in the vicinity of avoided band crossings with topologically non-trivial order. Our results indicate that oxide 2DEGs are strong candidates for spin-based information readout in novel memory and transistor designs. In parallel, they confirm the promise of topology as a new ingredient to expand the scope of complex oxides for spintronics.

Paper Details

Date Published: 10 September 2019
PDF
Proc. SPIE 11090, Spintronics XII, 1109020 (10 September 2019);
Show Author Affiliations
Paul Noël, Spintronique et Technologie des Composants (France)
Diogo C. Vaz, Unité Mixte de Physique CNRS/Thales (France)
Annika Johansson, Max-Planck-Institut für Mikrostrukturphysik (Germany)
Börge Göbel, Max-Planck-Institut für Mikrostrukturphysik (Germany)
Flavio Y. Bruno, Univ. de Genève (Switzerland)
Gyanendra Singh, Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (France)
Siobhan McKeown-Walker, Univ. de Genève (Switzerland)
Felix Trier, Unité Mixte de Physique CNRS/Thales (France)
Anke Sander, Unité Mixte de Physique CNRS/Thales (France)
Pierre Bruneel, Lab. de Physique des Solides (France)
Manali Vivek, Lab. de Physique des Solides (France)
Marc Gabay, Lab. de Physique des Solides (France)
Nicolas Bergeal, Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (France)
Felix Baumberger, Univ. de Genève (Switzerland)
Hanako Okuno, CEA-INAC-MEM (France)
Agnès Barthélémy, Unité Mixte de Physique CNRS/Thales (France)
Albert Fert, Unité Mixte de Physique CNRS/Thales (France)
Laurent Vila, Spintronique et Technologie des Composants (France)
Ingrid Mertig, Max-Planck-Institut für Mikrostrukturphysik (Germany)
Jean-Philippe Attané, Spintronique et Technologie des Composants (France)
Manuel Bibès, Unité Mixte de Physique CNRS/Thales (France)


Published in SPIE Proceedings Vol. 11090:
Spintronics XII
Henri-Jean M. Drouhin; Jean-Eric Wegrowe; Manijeh Razeghi, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray