Share Email Print

Proceedings Paper

Determination of thresholds for safe analyses of acrylic paintings by nonlinear optical microscopy (Conference Presentation)
Author(s): Mikel Sanz; Mohamed Oujja; Raffaella E. M. Fontana; Riccardo Cicchi; Alice Dal Fovo; Sara Mattana; Marco Marchetti; Marta Castillejo

Paper Abstract

Non-invasive, high resolution 3D analysis techniques are very much sought for the characterization of multilayer, multicomponent substrates, as those often encountered in artworks and objects of cultural heritage. The non-linear optical interaction of ultrashort laser pulses with a substrate is the basis of the various modalities of the non-linear optical microscopy (NLOM) techniques, recently introduced for the study of cultural heritage objects. NLOM relies on near-IR, femtosecond laser excitation of transparent or semi-transparent materials to simultaneously induce, with 3D micrometric resolution, and depending on the optical properties of the sample, multiphoton excitation fluorescence (MPEF) and second and third harmonic generation (SHG, THG) signals. MPEF emission is related to the sample chemical composition, SHG identifies the presence of non‐centrosymmetric structures and THG allows imaging interfaces between optically dissimilar materials. For paintings, it has been recently reported that valuable information about composition, layer thickness and state of conservation can be obtained by NLOM [1-3]. Although NLOM is a non-invasive technique, ensuring a correct analytical protocol requires the determination of the laser power thresholds that allow measurements under safe conditions, an aspect especially important when studying sensitive materials such as paintings. In this work, we present a novel methodology to determine the laser power thresholds for safe analyses by MPFE of painting layers. We also present the results obtained in a set of acrylic paints, extensively used by artists over the past century thanks to their properties and low cost of manufacture. To that purpose, samples were prepared as thin layers over a glass substrate and MPEF signals were induced with two different femtosecond laser sources: a Ti:Sapphire laser with wavelength of 800 nm, repetition rate of 80 MHz, and pulses of 70 femtoseconds; an optical parametric oscillator pumped by a Yb-based laser with repetition rate of 80 MHz and dual output: at 800 nm with pulses of 100 fs and at 1040 nm with pulses of 140 fs. The excitation wavelength affects the determined thresholds and the results obtained show a strong dependence on the light absorption properties and chemical composition of the painting material. [1] Oujja M., Psilodimitrakopoulos S., Carrasco E., Sanz M., Philippidis A., Selimis A., Pouli P., Filippidis G., Castillejo M. (2017) Phys. Chem. Chem. Phys. 19, 22836-22843. [2] Liang H., Mari M., Cheung C.S., Kogou S., Johnson P., Filippidis G., (2017) Opt. Express 25, 19640–19653. [3] Dal Fovo A., Oujja M., Sanz M., Martínez-Hernández A., Cañamares M.V., Castillejo M., Fontana R. (2019) Spectrochim. Acta A 208, 262-270.

Paper Details

Date Published: 22 July 2019
Proc. SPIE 11058, Optics for Arts, Architecture, and Archaeology VII, 1105808 (22 July 2019); doi: 10.1117/12.2525989
Show Author Affiliations
Mikel Sanz, Consejo Superior de Investigaciones Científicas (Spain)
Mohamed Oujja, Consejo Superior de Investigaciones Científicas (Spain)
Raffaella E. M. Fontana, Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica (Italy)
Riccardo Cicchi, Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica (Italy)
Alice Dal Fovo, Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica (Italy)
Sara Mattana, Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica (Italy)
Marco Marchetti, LENS - Lab. Europeo di Spettroscopie Non-Lineari (Italy)
Marta Castillejo, Consejo Superior de Investigaciones Científicas (Spain)

Published in SPIE Proceedings Vol. 11058:
Optics for Arts, Architecture, and Archaeology VII
Haida Liang; Roger Groves; Piotr Targowski, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?