Share Email Print

Proceedings Paper

3D scene reconstruction and object recognition for indoor scene
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In recent years, many SLAM (simultaneous localization and mapping) systems have appeared showing impressive dense scene reconstruction. However, the normal SLAM system build 3D scenes at point level without any semantic information. Many computer vision applications require high ability of scene understanding and point-based SLAM shows insufficiency in these applications. This paper studies about fusing 3D object recognition into SLAM system, using hand-held RGB-D camera and RTAB-Map to reconstruct dense point cloud of 3D indoor scene. Then we use supervoxel based point cloud segmentation approaches to over-segment the scene. 3D object classification model trained by PointNet is added to merge the segmentation process and object recognition. Our experiment on indoor environment shows the effectiveness of this system.

Paper Details

Date Published: 22 March 2019
PDF: 6 pages
Proc. SPIE 11049, International Workshop on Advanced Image Technology (IWAIT) 2019, 1104909 (22 March 2019); doi: 10.1117/12.2521492
Show Author Affiliations
Yangping Shen, Chiba Univ. (Japan)
Yoshitsugu Manabe, Chiba Univ. (Japan)
Noriko Yata, Chiba Univ. (Japan)

Published in SPIE Proceedings Vol. 11049:
International Workshop on Advanced Image Technology (IWAIT) 2019
Qian Kemao; Kazuya Hayase; Phooi Yee Lau; Wen-Nung Lie; Yung-Lyul Lee; Sanun Srisuk; Lu Yu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?