Share Email Print

Proceedings Paper

Nonlinear circular dichroism in GaAs nanowires partially covered by gold (Conference Presentation)
Author(s): Alessandro Belardini; Joel T. Collins; David C. Hooper; Grigore Leahu; Emilija Petronijevic; Marco Centini; Teemu Hakkarainen; Eero Koivusalo; Marcelo Rizzo Piton; Soile Suomalainen; Mircea Guina; Ventsislav K. Valev; Concita Sibilia

Paper Abstract

Asymmetric nanostructures can mimic a chiral response when circular polarized light interacts with the structures under particular angle of incidence [1]. This phenomenon is called ‘extrinsic chirality’ and usually is present under linear optical investigation with low visibility. Due to the fact that optical second harmonic generation is possible only in samples with some degree of asymmetry, this can be used in order to investigate the extrinsic chirality with a background free technique, thus inducing a high visibility of the artificial circular dichroism [2,3]. Here we present the second harmonic generation (SHG) measurements obtained on samples composed by GaAs nanowires grown on silicon. The wires present resonant leaky modes around 800nm and at 400nm due to the high refractive index contrast ratio between wires and air, even if these wavelengths lie on the absorption band of GaAs [4]. The measurements performed on this sample present good SHG signal due to the second order nonlinear term of GaAs, but did not present any circular dichroism (SHG-CD). By coating the sample with a 20nm thin layer of gold deposited asymmetrically, by evaporating the metal only from one side of the nanowires, the symmetry of the structure is broken, thus induced high SHG-CD. The SHG-CD is measured by shining the sample with circular polarized pump light at the fundamental wavelength of 800nm and by revealing the second harmonic signal at 400nm in s or p polarization, as a function of sample rotation. Four samples were measured with GaAs wires of about 5 micron in length with different diameters ranging from 140nm to 200nm. In this case it is possible to explore different resonance conditions and different SHG-CD is revealed. For each sample, the measured were carried out before and after the asymmetric gold layer deposition, thus allowing direct comparison of the results. References [1] A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, Phys. Rev. Lett. 107, 257401 (2011). [2] A. Belardini, M. Centini, G. Leahu, D. C. Hooper, R. Li Voti, E. Fazio, J. W. Haus, A. Sarangan, V. K. Valev, C. Sibilia, Sci. Rep. 2016, 6, 31796. [3] G. Leahu, E. Petronijevic, A. Belardini et al., Adv. Optical Mater. 2017, 1601063 (2017). [4] G. Leahu, E. Petronijevic, A. Belardini, M. Centini, R. Li Voti, T. Hakkarainen, E. Koivusalo, M. Guina, C. Sibilia. Sci. Rep. 7, 2833 (2017).

Paper Details

Date Published: 13 May 2019
Proc. SPIE 11026, Nonlinear Optics and Applications XI, 110260K (13 May 2019); doi: 10.1117/12.2521052
Show Author Affiliations
Alessandro Belardini, Sapienza Univ. di Roma (Italy)
Joel T. Collins, Univ. of Bath (United Kingdom)
David C. Hooper, Univ. of Bath (United Kingdom)
Grigore Leahu, Sapienza Univ. di Roma (Italy)
Emilija Petronijevic, Sapienza Univ. di Roma (Italy)
Marco Centini, Sapienza Univ. di Roma (Italy)
Teemu Hakkarainen, Tampere Univ. of Technology (Finland)
Eero Koivusalo, Tampere Univ. of Technology (Finland)
Marcelo Rizzo Piton, Tampere Univ. of Technology (Finland)
Soile Suomalainen, Tampere Univ. of Technology (Finland)
Mircea Guina, Tampere Univ. of Technology (Finland)
Ventsislav K. Valev, Univ. of Bath (United Kingdom)
Concita Sibilia, Sapienza Univ. di Roma (Italy)

Published in SPIE Proceedings Vol. 11026:
Nonlinear Optics and Applications XI
Mario Bertolotti; Alexei M. Zheltikov, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?