Share Email Print

Proceedings Paper

Yb:YAG/Cr:YAG microchip laser output energy optimization
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The influence of pumping beam diameter on output of the room-temperature operated Q-switched longitudinally diode-pumped Yb:YAG microchip laser was investigated. The tested microchip laser was based on monolith crystal (diameter 3mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3mm long) and saturable absorber (Cr:YAG crystal, 1.36mm long, initial transmission 90% @ 1031 nm). The microchip resonator consisted of dielectric mirrors directly deposited on the monolith surfaces. The pump mirror (HT for pump radiation, HR for generated radiation) was placed on the Yb:YAG part. The output coupler with reflection 55% for the generated wavelength was placed on the Cr3+-doped part. For longitudinal pumping, fibre coupled (core diameter 400 ¹m, NA= 0:22) laser diode was used. The diode was operating in pulsed regime (repetition rate 20 Hz, pulse length 3 ms, maximum pumping energy 95 mJ, wavelength 934 nm). Three various pumping optics offering pumping beam radius 0.20, 0.27, and 0.34mm were used. The wavelength of microchip laser emission was 1031 nm. The pumping beam radius did not signficantly influenced the pulse duration which was 1:5 § 0:3 ns (FWHM) in all three cases. The highest generated single Q-switched pulse energy (1.08 mJ) was obtained for pumping beam radius 0.27mm for maximum pumping. The corresponding peak power was 0.72MW.

Paper Details

Date Published: 26 April 2019
PDF: 8 pages
Proc. SPIE 11033, High-Power, High-Energy, and High-Intensity Laser Technology IV, 1103310 (26 April 2019); doi: 10.1117/12.2520918
Show Author Affiliations
Jan Šulc, Czech Technical Univ. in Prague (Czech Republic)
Jan Eisenschreiber, Czech Technical Univ. in Prague (Czech Republic)
Helena Jelínková, Czech Technical Univ. in Prague (Czech Republic)
Karel Nejezchleb, CRYTUR Ltd. (Czech Republic)
Václav Škoda, CRYTUR Ltd. (Czech Republic)

Published in SPIE Proceedings Vol. 11033:
High-Power, High-Energy, and High-Intensity Laser Technology IV
Joachim Hein; Thomas J. Butcher, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?