Share Email Print

Proceedings Paper

Single-wall carbon nanotube doped photopolymer for holographic use
Author(s): Jialing Jian; Lin Cao; Jinxin Guo; Lu Rong; Xinping Zhang; Dayong Wang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Nanocomposites photonic materials are being actively studied for practical applications such as touch screen, wearable devices, optical sensors, photolithography, and neutron optics. For many of these applications, it is essential to fabricate embedded phase structures into media, in order to implement various properties for its practicality. High-contrast refractive-index changes with promising flexibility are usually desired for these applications. Photopolymers as an appealing candidate are attractive because they hold several advantages, such as low cost, ease of use, shape flexibility, large-area process ability, and self-development capability. In this work, we carried out single-wall nanotube doped polymer composites, which are based on acrylate-thiol-ene photopolymer material. It is shown that a substantial increase in refractive index modulation and diffraction efficiency is realized by doping both of BzO2 and single-wall nanotubes. Moreover, the incorporation of BzO2 lowers the optimum recording intensity to 0.25 mW/cm2. These results indicate that carbon nanotube-polymer composite provides effective method to fabricate flexible films with large-area holograms for wearable devices, display, and optical sensor uses.

Paper Details

Date Published: 23 April 2019
PDF: 6 pages
Proc. SPIE 11030, Holography: Advances and Modern Trends VI, 1103006 (23 April 2019); doi: 10.1117/12.2520841
Show Author Affiliations
Jialing Jian, Beijing Univ. of Technology (China)
Lin Cao, Beijing Univ. of Technology (China)
Jinxin Guo, Beijing Univ. of Technology (China)
Lu Rong, Beijing Univ. of Technology (China)
Xinping Zhang, Beijing Univ. of Technology (China)
Dayong Wang, Beijing Univ. of Technology (China)

Published in SPIE Proceedings Vol. 11030:
Holography: Advances and Modern Trends VI
Antonio Fimia; Miroslav Hrabovský; John T. Sheridan, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?