Share Email Print

Proceedings Paper

Data column prediction: experiment in automated column tagging using machine learning
Author(s): S. McCabe; B. Cropp; J. Coles; J. Del Vecchio; J. Ekstrum
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The lack of tools to rapidly identify and align data from different sources is a critical, needed capability for the Department of Defense especially when it comes to automated ingestion. In the current open source Karma Mapping Tool, the Steiner tree optimization algorithm suggests semantic types during data alignment. We hypothesize that Machine Learning (ML) may perform better than the Steiner approach on a subset of column types, or “labels”, where 1.) the data is extremely similar in structure and content and 2.) inferring column type correctly is highly dependent on the interrelated components of the dataset. In this session we discuss the experimental design, our initial results, and a path toward future work in broader applications beginning with intelligence analysis in the maritime domain. The initial results from this experiment show there is promise in using ML to do column prediction in analysis environments where there are many similar or overlapping data.

Paper Details

Date Published: 10 May 2019
PDF: 8 pages
Proc. SPIE 11006, Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, 110060E (10 May 2019); doi: 10.1117/12.2519305
Show Author Affiliations
S. McCabe, CUBRC, Inc. (United States)
B. Cropp, CUBRC, Inc. (United States)
J. Coles, CUBRC, Inc. (United States)
J. Del Vecchio, CUBRC, Inc. (United States)
J. Ekstrum, CUBRC, Inc. (United States)

Published in SPIE Proceedings Vol. 11006:
Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications
Tien Pham, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?