Share Email Print
cover

Proceedings Paper

Towards information extraction from ISR reports for decision support using a two-stage learning-based approach
Author(s): Dirk Mühlenberg; Achim Kuwertz; Philipp Schenkel; Wilmuth Müller
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The main challenge of computer linguistics is to represent the meaning of text in a computer model. Statistics based methods with manually created features have been used for more than 30 years with a divide and conquer approach to mark interesting features in free text. Around 2010, deep learning concepts found their way into the text-understanding research community. Deep learning is very attractive and easy to apply but needs massive pools of annotated and high quality data from every target domain, which is generally not available especially for the military domain. When changing the application domain one needs additional or new data to adopt the language models to the new domain. To overcome the everlasting “data problem” we chose a novel two-step approach by first using formal representations of the meaning and then applying a rule-based mapping to the target domain. As an intermediate language representation, we used abstract meaning representation (AMR) and trained a general base model. This base model was then trained with additional data from the intended domains (transfer learning) evaluating the quality of the parser with a stepwise approach in which we measured the parser performance against the amount of training data. This approach answered the question of how much data we need to get the required quality when changing an application domain. The mapping of the meaning representation to the target domain model gave us more control over specifics of the domain, which are not generally representable by a machine learning approach with self-learned feature vectors.

Paper Details

Date Published: 30 April 2019
PDF: 12 pages
Proc. SPIE 11015, Open Architecture/Open Business Model Net-Centric Systems and Defense Transformation 2019, 110150P (30 April 2019); doi: 10.1117/12.2518599
Show Author Affiliations
Dirk Mühlenberg, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)
Achim Kuwertz, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)
Philipp Schenkel, Karlsruher Institut für Technologie (Germany)
Wilmuth Müller, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)


Published in SPIE Proceedings Vol. 11015:
Open Architecture/Open Business Model Net-Centric Systems and Defense Transformation 2019
Raja Suresh, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray