Share Email Print
cover

Proceedings Paper

Elastic-lidar signal statistics and sensing efficiency depending on the laser radiation wavelength
Author(s): Tsvetina T. Evgenieva; Vladimir A. Anguelov; Ljuan L. Gurdev
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In the present work, Poisson-fluctuating lidar profiles are modeled statistically as obtained from clear and hazy atmospheres containing Sharan-dust-like layers. The shot-noise fluctuations are simulated in fact induced by the useful signal itself, the optical background, and the dark current in the photon detector. The profiles obtained for UV, VIS and NIR sensing radiations are compared and analyzed. It is shown that the best lidar images of Saharan dust layers are obtainable by using NIR sensing radiation. They are characterized by higher contrast and clarity. The images obtained by using UV or VIS radiation may be entirely masked by shot-noise and even by multiple-scattering due parasitic (bias and random) noise. To clarify the images obtained in this case, by lowering the random noise level, one should average, as shown, the lidar profiles over a series of laser shots and/or smooth them along the lidar line of sight. Certainly, this lowers the temporal and/or spatial resolution of sensing by UV and VIS radiation. Thus, the results obtained confirm and illustrate the advantages of the NIR wavelength range, when sensing dense compact aerosol objects, predicted previously by the mean profiles investigated of the lidar signal strength and signal-to-noise ratio.

Paper Details

Date Published: 29 January 2019
PDF: 8 pages
Proc. SPIE 11047, 20th International Conference and School on Quantum Electronics: Laser Physics and Applications, 1104716 (29 January 2019); doi: 10.1117/12.2516532
Show Author Affiliations
Tsvetina T. Evgenieva, Institute of Electronics (Bulgaria)
Vladimir A. Anguelov, Institute for Nuclear Research and Nuclear Energy (Bulgaria)
Ljuan L. Gurdev, Institute of Electronics (Bulgaria)


Published in SPIE Proceedings Vol. 11047:
20th International Conference and School on Quantum Electronics: Laser Physics and Applications
Tanja N. Dreischuh; Latchezar A. Avramov, Editor(s)

© SPIE. Terms of Use
Back to Top