Share Email Print

Proceedings Paper

Synthesis and characterization of PbS/ZnS core/shell nanocrystals (Conference Presentation)
Author(s): Janice Boercker

Paper Abstract

Lead sulfide (PbS) nanocrystals have been used as the active material in high performance, solution-processed, room temperature devices, such as photodetectors, light-emitting diodes, and solar cells. The addition of a zinc sulfide (ZnS) shell to PbS nanocrystals could be advantageous for these devices because it could lead to higher/more stable photoluminescence quantum yields and reduced non-radiative recombination from electron-phonon coupling. However, while ZnS shells have been successfully added to several nanocrystals such as CdS and CdSe it has never been added directly (without a spacer layer) to PbS nanocrystals. This is because it is difficult to add shells to Pb chalcogenide nanocrystals due to their tendency to Ostwald ripen at even moderate temperatures. We have overcome this roadblock and are the first to demonstrate the synthesis of PbS/ZnS core/shell nanocrystals using a “flash” type synthesis with Zn oleate and thioacetamide as the ZnS precursors. We have found that the reaction is self-limiting and deposits a single monolayer of ZnS per shell reaction without causing the PbS nanocrystals to Ostwald ripen. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) verified the presence of the ZnS shell. Furthermore, the absorbance and photoluminescence peak energies were found to redshift upon adding the ZnS shell due to the relaxation of a ligand-induced tensile strain, as well as wave function leakage into the ZnS shell.

Paper Details

Date Published: 14 May 2019
Proc. SPIE 10980, Image Sensing Technologies: Materials, Devices, Systems, and Applications VI, 109800W (14 May 2019); doi: 10.1117/12.2516304
Show Author Affiliations
Janice Boercker, U.S. Naval Research Lab. (United States)

Published in SPIE Proceedings Vol. 10980:
Image Sensing Technologies: Materials, Devices, Systems, and Applications VI
Nibir K. Dhar; Achyut K. Dutta; Sachidananda R. Babu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?