Share Email Print
cover

Proceedings Paper

Direct tomography of high-dimensional photon states (Conference Presentation)
Author(s): Zhimin Shi

Paper Abstract

In this work, we present a family of direct tomography protocols that can characterize various types of high-dimensional photon states. In specific, we show direct tomography approaches that can measure high-dimensional spatial modes, spatial vector modes and partially-coherent modes. In direct tomography methods, the measurement readouts directly correspond to the complex-valued state vector or other quantities that describe the quantum system to be measured, and therefore can significantly reduce the complexity of tomography procedures for high-dimensional states. Moreover, we show that it is possible to design the tomography protocol such that all the information needed to describe the photon states can be acquired in a single experimental setup without any need of scanning. This is particularly interesting for real-time metrology of both quantum and classical photon states. The unique single-shot, direct characterization capability provide powerful real-time metrology tools that can boost fundamental studies and applications of high-dimensional photon states.

Paper Details

Date Published: 5 March 2019
PDF
Proc. SPIE 10934, Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology, 109342T (5 March 2019); doi: 10.1117/12.2515661
Show Author Affiliations
Zhimin Shi, Univ. of South Florida (United States)


Published in SPIE Proceedings Vol. 10934:
Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology
Selim M. Shahriar; Jacob Scheuer, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray