Share Email Print

Proceedings Paper

Machine learning for optical skin microscopy: a tutorial, current advances, and challenges (Conference Presentation)
Author(s): Jennifer G. Dy; Kivanc Kose; Alican Bozkurt; Dana H. Brooks; Milind Rajadhyaksha

Paper Abstract

Traditional clinical diagnosis and research on skin lesions, performed by visual examination, dermoscopy, biopsy, and pathology, are complemented with newer noninvasive optical imaging approaches, including reflectance confocal microscopy (RCM) and optical coherence tomography (OCT). Limitations such as single contrast (gray-scale) (RCM, OCT), limited structure-specific contrast (RCM, OCT), en face orientation (RCM), relatively low resolution (OCT), and spatially variable speckle noise (RCM, OCT), contrary to the orthogonal orientation, purple and pink color contrast and noise-free appearance of pathology. Interpreting nuclear, cellular and morphologic patterns at different magnifications and scales are mostly manual, qualitative and subjective, with consequent intra- and inter-observer variability among experts and extensive training requirements for novices. These new / developing approaches need quantitative, accurate and repeatable image reading and analysis tools, which may be created with machine learning (ML) and associated methods. Recent advances in ML offer an intellectually rich "sandbox," which can be simply and naively applied as "off the shelf" solutions. However, we contend that for longer-term success, it is critical to avoid such off-the-shelf solutions and instead design novel, specialized, microscopy-specific ML algorithms. The "sandbox" provides ideas, concepts, developments, low-level feature extraction tools and higher-level ML tools. Recent work has focused on using ML for detection of the dermal-epidermal junction in image-stacks (RCM, OCT), classification of cellular patterns in image-mosaics of melanocytic lesions (RCM), basal cell carcinoma detection (OCT), and videomosaicking (RCM). In this presentation, we provide a tutorial on applying ML to skin microscopy in the context of our experience developing novel learning models for RCM skin image analysis.

Paper Details

Date Published: 4 March 2019
Proc. SPIE 10851, Photonics in Dermatology and Plastic Surgery 2019, 1085105 (4 March 2019); doi: 10.1117/12.2515463
Show Author Affiliations
Jennifer G. Dy, Northeastern Univ. (United States)
Kivanc Kose, Memorial Sloan-Kettering Cancer Ctr. (United States)
Alican Bozkurt, Northeastern Univ. (United States)
Dana H. Brooks, Northeastern Univ. (United States)
Milind Rajadhyaksha, Memorial Sloan-Kettering Cancer Ctr. (United States)

Published in SPIE Proceedings Vol. 10851:
Photonics in Dermatology and Plastic Surgery 2019
Bernard Choi; Haishan Zeng, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?