Share Email Print

Proceedings Paper

Employing methods with generalized singular value decomposition for regularization in ultrasound tomography
Author(s): Anita Carević; Ahmed Abdou; Ivan Slapničar; Mohamed Almekkawy
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The Distorted Born Iterative (DBI) method is used for ultrasound tomography in order to localize and identify malignant breast tissues. This approach begins with the Born approximation to generate an initial prediction of the scattering function. Then, iteratively solves the forward problem for the total field and the inhomogeneous Green’s function, and the inverse problem for the scattering function. The drawback of this method is that the associated inverse scattering problem is ill-posed. We are proposing the Truncated General Singular Value Decomposition (TGSVD) approach as a regularization method for the ill posed inverse problem Xy = b in DBI and comparing it to the well known Truncated Singular Value Decomposition (TSVD). The TGSVD employs generalized SVD (GSVD) of matrix pair (X,L) and is neglecting the smallest, contaminated with noise, generalized singular values, while regularization matrix L (we used the first order derivative operator) is responsible for smoothing the solution. This results in better image quality. We compared the performances of these two methods on simulated phantom and proved that TGSVD produces lower relative error and better reconstructed image.

Paper Details

Date Published: 15 March 2019
PDF: 8 pages
Proc. SPIE 10955, Medical Imaging 2019: Ultrasonic Imaging and Tomography, 1095509 (15 March 2019); doi: 10.1117/12.2511630
Show Author Affiliations
Anita Carević, Univ. of Split (Croatia)
Ahmed Abdou, The Pennsylvania State Univ. (United States)
Ivan Slapničar, Univ. of Split (Croatia)
Mohamed Almekkawy, The Pennsylvania State Univ. (United States)

Published in SPIE Proceedings Vol. 10955:
Medical Imaging 2019: Ultrasonic Imaging and Tomography
Brett C. Byram; Nicole V. Ruiter, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?