Share Email Print
cover

Proceedings Paper

Optimization of light transmission through an excitation-scan hyperspectral mirror array system
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Hyperspectral imaging has numerous applications in a range of fields for target detection. While its original applications were in remote sensing, new uses include analyzing food quality, agriculture and medicine, Hyperspectral imaging has shown utility in fluorescence microscopy for detecting signatures from many fluorescent molecules, but acquisition speeds have been slow due to the need to acquire many spectral bands and the light losses associated with spectral filtering. Therefore, a novel confocal microscope, the 5- Dimensional Rapid Hyperspectral Imaging Platform (RHIP-5D) was designed and is undergoing testing to overcome acquisition speed and sensitivity limitations. The current design utilizes light-emitting diodes (LEDs) and a multifaceted mirror array to combine light sources into a liquid light guide. Initial tests demonstrated feasibility and we are now working on determining the ideal location of the liquid light guide, LEDs, lenses and mirror array to optimize optical transmission. A computational model was constructed using Monte Carlo optical ray tracing in TracePro software (Lambda Research Corp.). LED sources were simulated by importing irradiance properties from the manufacturers’ specifications. Optical properties of lenses were modeled using lens files available from the manufacturer. Analysis of the model includes geometry and parametric optimization, assessing lens power, mirror angles and location of optical elements. Initial results show an increase of transmission is possible by up to 20%. Future work will involve evaluating the position of the liquid light guide as well as analyzing lens configurations to further increase optical transmission.

Paper Details

Date Published: 4 March 2019
PDF: 7 pages
Proc. SPIE 10881, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XVII, 108810O (4 March 2019); doi: 10.1117/12.2510555
Show Author Affiliations
Marina Parker, Univ. of South Alabama (United States)
Craig M. Browning, Univ. of South Alabama (United States)
Thomas C. Rich, Univ. of South Alabama (United States)
Silas J. Leavesley, Univ. of South Alabama (United States)


Published in SPIE Proceedings Vol. 10881:
Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XVII
Daniel L. Farkas; Attila Tárnok; James F. Leary, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray